
TAP JUGGLING
Test Anything Protocol - everywhere

Steffen Schwigon, Operating System Research Center

August 15, 2011

Public

2 | TAP Juggling | August 15, 2011 | Public

INTRODUCTION

3 | TAP Juggling | August 15, 2011 | Public

INTRODUCTION | Abstract

The Operating System Research Center (OSRC), a global AMD Research organisation headquartered in

Dresden, Germany, acts as a bridge between the OS development community and the worldwide AMD

processor design community.

At the OSRC we develop and run a test infrastructure called "Tapper". One of its used essential technologies

is the Test Anything Protocol, or TAP.

By that postulate we use, write, and combine TAP tools in occasionally unorthodox ways to achieve our

goals. In this talk I will give an overview of available TAP tools and related topics.

4 | TAP Juggling | August 15, 2011 | Public

INTRODUCTION | Context

Operating System Research Center (OSRC)

We developed and run a test infrastructure called Tapper

– Automated testing of operating systems and virtualization (Xen/KVM)

– Published as open source in 2011

 http://github.com/amd

 http://developer.amd.com/zones/opensource/AMDTapper

Central idea: Test Anything Protocol - TAP

– Tapper is a TAP database

– We “lazy evaluate” TAP (in contrast to produce TAP)

– TAP is our daily business

Overview of available TAP tools

– not restricted to Tapper

http://github.com/amd
http://developer.amd.com/zones/opensource/AMDTapper

5 | TAP Juggling | August 15, 2011 | Public

INTRODUCTION | Motivation

TAP is a data format

Primarily for expressing test results

Easier than XML, YAML, JSON, etc.

Yet allows embedded YAML (simple subset)

Errors are forgiven (non-TAP lines are ignored)

Migrates all the complexity to the toolchain developer

User “whipuptitute” + developer “manipulexity” low usage barrier

6 | TAP Juggling | August 15, 2011 | Public

INTRODUCTION | Agenda

Escalate in complexity

– Tier 1: TAP basics

– Tier 2: TAP v13 and formatting

– Tier 3: Transport meta information

– Tier 4: TAP as document object model

– Tier 5: Write TAP applications

– Tier 6: Test waivers

– Final Tier: Nested TAP

7 | TAP Juggling | August 15, 2011 | Public

TIER 1 | Trainee

8 | TAP Juggling | August 15, 2011 | Public

TIER 1 | TAP Basics

 Line-based protocol

Starts with a “plan” – how many test lines expected

Some “ok” test lines

Some “not ok” test lines

Directives # TODO / # SKIP on test lines

Comment lines starting with “#”

Unrecognized lines are ignored

9 | TAP Juggling | August 15, 2011 | Public

TIER 1 | TAP Basics | Synopsis

1..3

ok

ok

not ok

Plan and ok/not ok lines

10 | TAP Juggling | August 15, 2011 | Public

TIER 1 | TAP Basics | Synopsis

1..3

ok - established connection

ok - checksum

not ok - transfer completed

Plan and ok/not ok lines

Test line descriptions

11 | TAP Juggling | August 15, 2011 | Public

TIER 1 | TAP Basics | Synopsis

1..3

ok - established connection

ok - checksum

not ok - transfer completed

got error message "Bummer!“

Plan and ok/not ok lines

Test line descriptions

Comment lines

12 | TAP Juggling | August 15, 2011 | Public

TIER 1 | TAP Basics | Synopsis

1..3

ok - established connection

ok - checksum

not ok - transfer completed # TODO we know it fails

got error message "Bummer!“

Plan and ok/not ok lines

Test line descriptions

Comment lines

Directives # TODO

13 | TAP Juggling | August 15, 2011 | Public

TIER 1 | TAP Basics | Synopsis

1..3

ok - established connection

ok - checksum # SKIP no md5sum available

not ok - transfer completed # TODO we know it fails

got error message "Bummer!“

Plan and ok/not ok lines

Test line descriptions

Comment lines

Directives # TODO / # SKIP

14 | TAP Juggling | August 15, 2011 | Public

TIER 1 | TAP Basics | Synopsis

1..3

ok - established connection

ok - checksum # SKIP no md5sum available

not ok - transfer completed # TODO we know it fails

got error message "Bummer!“

Hello? I am a statement lost in code, help me out!

Plan and ok/not ok lines

Test line descriptions

Comment lines

Directives # TODO / # SKIP

Unrecognized lines are ignored

15 | TAP Juggling | August 15, 2011 | Public

TIER 1 | TAP Basics | Synopsis

1..3

ok 1 - established connection

ok 2 - checksum # SKIP no md5sum available

not ok 3 - transfer completed # TODO we know it fails

got error message "Bummer!“

Hello? I am a statement lost in code, help me out!

Plan and ok/not ok lines – optionally numbered

Test line descriptions

Comment lines

Directives # TODO / # SKIP

Unrecognized lines are ignored

16 | TAP Juggling | August 15, 2011 | Public

TIER 1 | TAP Basics | Synopsis

1..3

ok 1 - established connection

ok 2 - checksum # SKIP no md5sum available

not ok 3 - transfer completed # TODO we know it fails

got error message "Bummer!“

Hello? I am a statement lost in code, help me out!

 TAP is like Perl

17 | TAP Juggling | August 15, 2011 | Public

TIER 1 | TAP Basics | Synopsis

1..3

ok 1 - established connection

ok 2 - checksum # SKIP no md5sum available

not ok 3 - transfer completed # TODO we know it fails

got error message "Bummer!“

Hello? I am a statement lost in code, help me out!

 TAP is like Perl (without sigils)

18 | TAP Juggling | August 15, 2011 | Public

TIER 1 | Run and evaluate TAP emitters

$ prove foo.t # run + evaluate

$ prove -m foo.t # run + evaluate + merge STDIN/OUT

$ prove -e cat static_tap_results.tap # just evaluate

19 | TAP Juggling | August 15, 2011 | Public

TIER 2 | Skilled

20 | TAP Juggling | August 15, 2011 | Public

TIER 2 | TAP v13

1..3

ok - established connection

ok - checksum # SKIP no md5sum available

not ok - transfer completed # TODO we know it fails

got error message "Bummer!“

Hello? I am a statement lost in code, help me out!

21 | TAP Juggling | August 15, 2011 | Public

TIER 2 | TAP v13

1..4

ok - established connection

ok - checksum # SKIP no md5sum available

not ok - transfer completed # TODO we know it fails

got error message "Bummer!“

Hello? I am a statement lost in code, help me out!

ok – transfer benchmarks

22 | TAP Juggling | August 15, 2011 | Public

TIER 2 | TAP v13 | Embedded YAML

1..4

ok - established connection

ok - checksum # SKIP no md5sum available

not ok - transfer completed # TODO we know it fails

got error message "Bummer!“

Hello? I am a statement lost in code, help me out!

ok – transfer benchmarks

benchmarks:

pass1:

snd: 1234.56

rcv: 999.99

pass2:

snd: 1123.56

rcv: 888.88

...

23 | TAP Juggling | August 15, 2011 | Public

TIER 2 | TAP v13 | Embedded YAML

TAP Version 13

1..4

ok - established connection

ok - checksum # SKIP no md5sum available

not ok - transfer completed # TODO we know it fails

got error message "Bummer!“

Hello? I am a statement lost in code, help me out!

ok – transfer benchmarks

benchmarks:

pass1:

snd: 1234.56

rcv: 999.99

pass2:

snd: 1123.56

rcv: 888.88

...

24 | TAP Juggling | August 15, 2011 | Public

TIER 2 | TAP v13 | Enforce version

 “TAP Version 13” - annoying detail for TAP producing end users

Configure on consumer side

$ prove --tapversion=13

25 | TAP Juggling | August 15, 2011 | Public

TIER 2 | TAP Formatting

HTML formatter

$ prove -Q --formatter=TAP::Formatter::HTML > out.html

Same via plugin

$ prove -Q –P HTML:outfile:out.html

26 | TAP Juggling | August 15, 2011 | Public

TIER 2 | TAP Formatting

HTML formatter

$ prove -Q --formatter=TAP::Formatter::HTML > out.html

Same via plugin

$ prove -Q –P HTML:outfile:out.html

Used in Tapper…

27 | TAP Juggling | August 15, 2011 | Public

TIER 2 | TAP Formatting

28 | TAP Juggling | August 15, 2011 | Public

TIER 3 | Combat

29 | TAP Juggling | August 15, 2011 | Public

TIER 3 | Transport meta information

 “Hot comments“ - meta information in comment lines

Tapper-specific extension to evaluate them

Example: “t/00-tapper-meta.t”

use Tapper::Test;

tapper_suite_meta;

Result TAP

1..1

ok 1 - tapper-suite-meta

Tapper-suite-name: Some-Library

Tapper-suite-version: 3.000010

Tapper-machine-name: bascha

Tapper-uname: Linux bascha 2.6.35-30-generic #54-Ubuntu SMP x86_64 GNU/Linux

Tapper-osname: Ubuntu 10.10

Tapper-cpuinfo: 2 cores [AMD Athlon(tm) 64 X2 Dual Core Processor 6000+]

Tapper-ram: 2007MB

30 | TAP Juggling | August 15, 2011 | Public

TIER 4 | Warrior

31 | TAP Juggling | August 15, 2011 | Public

TIER 4 | TAP as document object model

 TAP::DOM – Synopsis

use TAP::DOM;

$tapdata = TAP::DOM->new(tap => $tapstr); # same options as TAP::Parser

print Dumper($tapdata);

32 | TAP Juggling | August 15, 2011 | Public

TIER 4 | TAP as document object model

Resulting data structure

bless ({

'tests_planned' => 6

'tests_run' => 8,

[…]

'summary' => {

'status' => 'FAIL',

'total' => 8,

'passed' => 6,

'failed' => 2,

'skipped' => 1,

'todo' => 4,

'todo_passed' => 2,

[…]

},

'lines' => [

{ 'number' => '1',

'is_ok' => 1,

'description' => '- use Data::DPath;',

'_children' => [# subsequent comments/yaml

{ 'is_yaml' => 1,

'data' => [{'name' => 'Hash one',

'value' => '1' },

{'name' => 'Hash two',

'value' => '2' }] }] }

[… lines …]

] }, 'TAP::DOM')

33 | TAP Juggling | August 15, 2011 | Public

TIER 4 | TAP as document object model

Uh, oh, complexity!

 Data::DPath to the rescue

– fuzzy paths through data structures

 $tapdom ~~ dpath '//summary/passed'

 $tapdom ~~ dpath '//description//foo'

34 | TAP Juggling | August 15, 2011 | Public

TIER 4 | TAP::DOM and Data::DPath

Example: find succeeding TODO tests

$ tap-emitting-test.sh | dpath -i tap '//has_todo[value==1]/../is_actual_ok[value==1]/..'

- as_string: "ok 149 - ANYWHERE + NOSTEP # TODO deferred"

description: "- ANYWHERE + NOSTEP"

directive: TODO

explanation: deferred

has_todo: 1

is_actual_ok: 1

is_ok: 1

is_test: 1

number: 149

type: test

35 | TAP Juggling | August 15, 2011 | Public

TIER 4 | TAP::DOM and Data::DPath

Example: extract benchmarks

$ perl xt/large_data.t | dpath -i tap //wallclock

36 | TAP Juggling | August 15, 2011 | Public

TIER 4 | TAP::DOM and Data::DPath

Tapper use case: “TAP pass-through”

– Subscribe to dedicated data blocks in TAP and forward them

– Test suite Tapper "reports receiver" "level 2 receivers"

– Subscribe to subsets of test results

– Extract and forward to appropriate 3rd party applications

– E.g., benchmark values to codespeed application

37 | TAP Juggling | August 15, 2011 | Public

TIER 4 | TAP::DOM and Data::DPath

Tapper use case: “TAP pass-through”

anywhere inside big TAP report...

ok - benchmark example data

codespeed:

-

benchmark: example1

commitid: 1b1a3d2a

environment: myhost

executable: perl-5.12.1

project: perl

result_value: 12.345

-

benchmark: example2

commitid: 1b1a3d2a

environment: myhost

executable: perl-5.12.1

project: perl

result_value: 9.876

...

some more TAP

38 | TAP Juggling | August 15, 2011 | Public

TIER 4 | TAP::DOM and Data::DPath

Tapper use case: “TAP pass-through”

– TAP pass-through implemented in 2 lines

method forward_to_codespeed ($tap_dom) {

step 1 - fuzzy subscription path

$chunks = $tap_dom ~~ dpath("//data/codespeed");

step 2 - pass-through

$lwp_useragent->post("http://CODESPEED/result/add/", $_) foreach @$chunks;

}

39 | TAP Juggling | August 15, 2011 | Public

TIER 5 | Veteran

40 | TAP Juggling | August 15, 2011 | Public

TIER 5 | Writing TAP applications

Emacs mode

 prove plugins

TAP transformers

41 | TAP Juggling | August 15, 2011 | Public

TIER 5 | Emacs tap-mode

Use Emacs tap-mode to edit TAP

42 | TAP Juggling | August 15, 2011 | Public

TIER 5 | Writing prove plugins

Carve out TAP from prove

43 | TAP Juggling | August 15, 2011 | Public

TIER 5 | Writing prove plugins

Carve out TAP from prove

– "prove -v" reprints TAP

– Idea: branch off TAP immediately during test run, but…

$ prove -vl t/foo.t

t/foo.t ..

1..1

ok 1 - use FOO

ok

All tests successful.

Files=1, Tests=1, 0 wallclock secs (0.10 usr 0.00 sys + 0.26 cusr 0.03 csys = 0.39 CPU)

Result: PASS

44 | TAP Juggling | August 15, 2011 | Public

TIER 5 | Writing prove plugins

Carve out TAP from prove

– "prove -v" reprints TAP

– Idea: branch off TAP immediately during test run, but…

$ prove -vl t/foo.t

t/foo.t ..

1..1

ok 1 - use FOO

ok <-- extra "ok" line - Bummer!

All tests successful.

Files=1, Tests=1, 0 wallclock secs (0.10 usr 0.00 sys + 0.26 cusr 0.03 csys = 0.39 CPU)

Result: PASS

45 | TAP Juggling | August 15, 2011 | Public

TIER 5 | Writing prove plugins

Carve out TAP from prove

– "prove -v" reprints TAP

– Idea: branch off TAP immediately during test run, but…

$ prove -vl t/foo.t

t/foo.t ..

1..1

ok 1 - use FOO

ok <-- extra "ok" line - Bummer!

All tests successful.

Files=1, Tests=1, 0 wallclock secs (0.10 usr 0.00 sys + 0.26 cusr 0.03 csys = 0.39 CPU)

Result: PASS

– prove output is not “idempotent”

46 | TAP Juggling | August 15, 2011 | Public

TIER 5 | Writing prove plugins

Carve out TAP from prove

– "prove -v" reprints TAP

– Idea: branch off TAP immediately during test run, but…

$ prove -vl t/foo.t

t/foo.t ..

1..1

ok 1 - use FOO

ok <-- extra "ok" line - Bummer!

All tests successful.

Files=1, Tests=1, 0 wallclock secs (0.10 usr 0.00 sys + 0.26 cusr 0.03 csys = 0.39 CPU)

Result: PASS

– prove output is not “idempotent”

– Since TAP::Harness v3.24 the ok line can be overwritten

47 | TAP Juggling | August 15, 2011 | Public

TIER 5 | Writing prove plugins

Carve out TAP from prove

– "prove -v" reprints TAP

– Idea: branch off TAP immediately during test run, but…

$ prove -vl t/foo.t

t/foo.t ..

1..1

ok 1 - use FOO

ok <-- extra "ok" line - Bummer!

All tests successful.

Files=1, Tests=1, 0 wallclock secs (0.10 usr 0.00 sys + 0.26 cusr 0.03 csys = 0.39 CPU)

Result: PASS

– prove output is not “idempotent”

– Since TAP::Harness v3.24 the ok line can be overwritten

– Module App::Prove::Plugin::Idempotent to the rescue

48 | TAP Juggling | August 15, 2011 | Public

TIER 5 | Writing prove plugins

Carve out TAP from prove

– "prove -v" reprints TAP

– Idea: branch off TAP immediately during test run, but…

$ prove –vl -P Idempotent t/foo.t

t/foo.t ..

1..1

ok 1 - use FOO

All tests successful.

Files=1, Tests=1, 0 wallclock secs (0.10 usr 0.00 sys + 0.26 cusr 0.03 csys = 0.39 CPU)

Result: PASS

– prove output is not “idempotent”

– Since TAP::Harness v3.24 the ok line can be overwritten

– Module App::Prove::Plugin::Idempotent to the rescue

49 | TAP Juggling | August 15, 2011 | Public

TIER 5 | TAP transformers

De-concatenate multiple TAP blocks from prove

50 | TAP Juggling | August 15, 2011 | Public

TIER 5 | TAP transformers

De-concatenate multiple TAP blocks from prove

– Problem: "prove -v" reprints TAP from many files concatenated

51 | TAP Juggling | August 15, 2011 | Public

TIER 5 | TAP transformers

De-concatenate multiple TAP blocks from prove

– Problem: "prove -v" reprints TAP from many files concatenated

$ prove –vl -P Idempotent t/foo.t t/bar.t

t/foo.t ..

1..1

ok 1 - use FOO

t/bar.t ..

1..1

ok 1 - use BAR

All tests successful.

Files=1, Tests=1, 0 wallclock secs (0.10 usr 0.00 sys + 0.26 cusr 0.03 csys = 0.39 CPU)

Result: PASS

52 | TAP Juggling | August 15, 2011 | Public

TIER 5 | TAP transformers

De-concatenate multiple TAP blocks from prove

– Solution: Module TAP::Splitter recognizes TAP borders

 TAP version line

 Plan line (1..3)

 prove„s filename line

use TAP::Snipper;

$tap = slurp ("$temp/too_much_tap_in_one_go.tap");

$snipper = TAP::Snipper->new(tap => $tap);

$snipper->_parse_tap_into_sections;

ARRAY of TAP blocks:

$snipper->parsed_report->{tap_sections}[*]{raw}

53 | TAP Juggling | August 15, 2011 | Public

TIER 6 | Master

54 | TAP Juggling | August 15, 2011 | Public

TIER 6 | Test waivers

 “Test waiver” == “ignore known issue for a reason”

The test has already been run, the result is there, we just don't like it

We need “lazy evaluated” exceptions to test results

That‟s in contrast to marking tests “# TODO” in advance

Example:

– Software project might not run with IPv6

– But you want to see a big SUCCESS or NO SUCCESS in an IPv4-only context

– Statically marking tests with “# TODO” requires changing back and forth

– Dynamically marking tests depending on environment conflicts

with debugging the problem

– Solution:

 append “# TODO explanation” to dedicated NOT OK lines, after you run the tests

– How to patch?

 Change the TAP::DOM, regenerate raw TAP

55 | TAP Juggling | August 15, 2011 | Public

TIER 6 | Test waivers

 TAP::DOM::Waivers -- match DPath, apply TAP::DOM hash merge

use TAP::DOM;

use TAP::DOM::Waivers 'waiver';

$dom = TAP::DOM->new(tap => "somefile.tap");

$waivers = [

{

a description of what the waiver is trying to achieve

comment => "Force all IPv6 stuff to true",

a DPath that matches the records to patch:

match_dpath => ["//lines//description[value =~ 'IPv6']/.."],

apply changes to the matched records,

here a TODO with an explanation:

patch => {

is_ok => 1,

has_todo => 1,

is_actual_ok => 0,

explanation => 'waiver for context xyz',

directive => 'TODO',

},

},

];

$patched_dom = waiver($dom, $waivers);

print NEWFILE $patched_dom->to_tap;

56 | TAP Juggling | August 15, 2011 | Public

TIER 6 | Test waivers

 TAP::DOM::Waivers -- meta patches, common cases like “TODO” or “SKIP”

$waivers = [

{

comment => "Force all IPv6 stuff to true",

match_dpath => ["//lines//description[value =~ 'IPv6']/.."],

metapatch => { TODO => 'waiver for context xyz' },

},

];

57 | TAP Juggling | August 15, 2011 | Public

TIER 6 | Test waivers

 TAP::DOM::Waivers -- meta patches, very often you match by description

$waivers = [

{

comment => "Force all IPv6 stuff to true",

match_description => ["IPv6"],

metapatch => { TODO => 'waiver for context xyz' },

},

];

58 | TAP Juggling | August 15, 2011 | Public

FINAL TIER

59 | TAP Juggling | August 15, 2011 | Public

FINAL TIER | Nested TAP

Nested TAP

TAP Version 13

1..2

ok 1 - established connection

1..3

ok 1 - step 2-1

ok 2 - step 2-2

ok 3 - step 2-3

ok 2 - transfer completed (summary of nested 2-x lines --> backwards compatible)

Rerun Tier 1 to 6 with nested TAP

 Left as an exercise for the audience

60 | TAP Juggling | August 15, 2011 | Public

FINAL TIER | Nested TAP

Nested TAP

TAP Version 13

1..2

ok 1 - established connection

1..3

ok 1 - step 2-1

ok 2 - step 2-2

ok 3 - step 2-3

ok 2 - transfer completed (summary of nested 2-x lines --> backwards compatible)

Rerun Tier 1 to 6 with nested TAP

 Left as an exercise for the audience

The End.

61 | TAP Juggling | August 15, 2011 | Public

The End.

62 | TAP Juggling | August 15, 2011 | Public

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions.

Other names used in this presentation are for identification purposes only and may be trademarks of their respective owners.

©2011 Advanced Micro Devices, Inc. All rights reserved.

