
LINUX TESTING WITH TAPPER
Complexity in a nutshell

Steffen Schwigon, AMD Operating System Research Center

October 28, 2011

Public

3 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

OVERVIEW | Abstract

The Operating System Research Center (OSRC), a global AMD Research organisation headquartered in

Dresden, Germany, acts as a bridge between the OS development community and the worldwide AMD

processor design community.

At the OSRC we run a test infrastructure to test Linux in many orthogonal dimensions: hardware

generations, software visible features, kernel branches, Linux-based distributions, virtualization with

upstream or distro-specific Xen and KVM, multi-machine scenarios, and running in simulators. Inside of

those dimensions we cover regression, functional, and stress tests, benchmarks, guest migration, and

reboot and suspend/resume tests.

This talk will give an overview of our test infrastructure (codename "Tapper") and dive deeper into some

interesting technical topics like the machine scheduler and the query interface, show the combination of

open-source standard protocols and tools to glue everything together, and how we break down that

complexity into easy but powerful, scriptable APIs with no client-side toolchain dependencies for the users.

4 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

OVERVIEW | Context

Operating System Research Center (OSRC)

We developed and run a test infrastructure called Tapper

– Automated testing of operating systems and virtualization (Xen/KVM)

– Published as open source in 2011

 Overview: http://developer.amd.com/zones/opensource/AMDTapper

 Mailing list: http://www.amd64.org/mailman/listinfo/tapper

 Source: http://github.com/amd

http://developer.amd.com/zones/opensource/AMDTapper
http://developer.amd.com/zones/opensource/AMDTapper
http://www.amd64.org/mailman/listinfo/tapper
http://www.amd64.org/mailman/listinfo/tapper
http://github.com/amd
http://github.com/amd
http://github.com/amd

5 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

OVERVIEW | Agenda

Overview

– Mission

– Test approaches

– Test infrastructure

– Automation

– Web GUI

Testing

– Understanding the test protocol

– From visible simplicity to hidden complexity

Automation

Result evaluation

– From hidden complexity back to visible simplicity

7 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

SCOPE | Mission

OS distribution testing

– Partner distributions: Novell (SLES), Red Hat (RHEL)

– Community distributions: openSuse, Fedora, (Debian, Ubuntu)

– Windows, as guest

 Linux kernel

– OSRC contributions

– Regressions (“Attack of the alien patches”)

Virtualization

– Xen

– KVM

AMD hardware

 Combinations of all the above

9 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TEST APPROACHES | 1/3: Functional testing

Functional testing of Linux kernel

–  “Classic QA”

– For OSRC enablement work

– Iterate Linux kernel + hardware + developer repositories

10 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TEST APPROACHES | 2/3: Virtualization matrix

Virtualization matrix

–  Find new problems

– Distro Xen/KVM vs. upstream releases

– Huge matrix of host/guest combinations

– Stress system (use benchmarks in guests)

– Iterate Xen/KVM + hardware

11 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TEST APPROACHES | 3/3: Testplans

Testplans

–  Ensure no regressions

– Dedicated scenarios for points of interest

– Bridge to “TaskJuggler” planning software

 Bi-directional: scheduling + reporting

– On top of the other approaches

12 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

OVERVIEW | Test infrastructure

14 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

BASIC PRINCIPLES

Test infrastructure “Tapper” -- basic principles:

– Zero overhead to write tests and report results

– Flexible evaluation: easy web GUI + scriptable API

– Optional but advanced automation

15 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

BASIC PRINCIPLES

Test infrastructure “Tapper” -- basic principles:

– Zero overhead to write tests and report results

– Flexible evaluation: easy web GUI + scriptable API

– Optional but advanced automation

16 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

BASIC PRINCIPLES

Test infrastructure “Tapper” -- basic principles:

– Zero overhead to write tests and report results

– Flexible evaluation: easy web GUI + scriptable API

– Optional but advanced automation

17 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

BASIC PRINCIPLES | Zero overhead

Zero overhead to write tests

– Just respect the test protocol (“TAP”)

 1..3

 ok - feature 'foo' available

 ok - expected return value

 not ok - memory cleaned up

Zero overhead to report results

– “Fire & forget” into socket

 test_program.sh | netcat tapper 7357

18 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

BASIC PRINCIPLES | Advanced automation

Boot machines from network and set up from scratch

– Optionally reuse machines via SSH

Track serial console output

Hardware reset on epic fails

Virtualization setups

Complex timeout handling

Optimize machine utilisation

 Bandwidth-driven multiplexing of “too many” use-cases on “not enough” machines

Allow multi-machine scenarios

 Network performance, guest migration

Benchmarking infrastructure

19 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

BASIC PRINCIPLES | Evaluation

Scriptable query interface

Web interface

20 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TESTING

21 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

The central idea is not a technology but a protocol.

22 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

The central idea is not a technology but a protocol.

(a standard one with already existing technology)

24 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Philosophy

No obligatory API how to write test

But standard protocol to declare test results

 “Test Anything Protocol” (TAP)

– Easy to generate

 OS testing - be prepared to have nothing

 Still easy when printf/printk/echo is everything you have

 However, lots of toolchains optionally available

– Scales from simplicity to complexity

– http://testanything.org

– http://amd64.org/fileadmin/user_upload/pub/yapc_eu_2011_tapjuggling.pdf

http://testanything.org/
http://amd64.org/fileadmin/user_upload/pub/yapc_eu_2011_tapjuggling.pdf

25 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Basics

 Line-based

Starts with a plan (“1..3”) – how many test lines expected

Some “ok” test lines

Some “not ok” test lines

Directives “# TODO” / “# SKIP” on test lines

Comment lines starting with “#”

Unrecognized lines are ignored

26 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Synopsis

1..3

ok

ok

not ok

Plan and ok/not ok lines

27 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Synopsis

1..3

ok - established connection

ok - checksum

not ok - transfer completed

Plan and ok/not ok lines

Test line descriptions

28 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Synopsis

1..3

ok - established connection

ok - checksum

not ok - transfer completed

got error message "Bummer!"

Plan and ok/not ok lines

Test line descriptions

Comment lines

29 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Synopsis

1..3

ok - established connection

ok - checksum

not ok - transfer completed # TODO we know it fails

got error message "Bummer!"

Plan and ok/not ok lines

Test line descriptions

Comment lines

Directives # TODO

30 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Synopsis

1..3

ok - established connection

ok - checksum # SKIP no md5sum available

not ok - transfer completed # TODO we know it fails

got error message "Bummer!"

Plan and ok/not ok lines

Test line descriptions

Comment lines

Directives # TODO / # SKIP

31 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Synopsis

1..3

ok - established connection

ok - checksum # SKIP no md5sum available

not ok - transfer completed # TODO we know it fails

got error message "Bummer!"

Hello? I am a statement lost in code, help me out!

Plan and ok/not ok lines

Test line descriptions

Comment lines

Directives # TODO / # SKIP

Unrecognized lines are ignored

32 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Synopsis

1..3

ok 1 - established connection

ok 2 - checksum # SKIP no md5sum available

not ok 3 - transfer completed # TODO we know it fails

got error message "Bummer!"

Hello? I am a statement lost in code, help me out!

Plan and ok/not ok lines – optionally numbered

Test line descriptions

Comment lines

Directives # TODO / # SKIP

Unrecognized lines are ignored

33 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Embedded data

1..3

ok 1 - established connection

ok 2 - checksum # SKIP no md5sum available

not ok 3 - transfer completed # TODO we know it fails

got error message "Bummer!"

Hello? I am a statement lost in code, help me out!

34 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Embedded data

1..4

ok 1 - established connection

ok 2 - checksum # SKIP no md5sum available

not ok 3 - transfer completed # TODO we know it fails

got error message "Bummer!"

Hello? I am a statement lost in code, help me out!

ok – transfer benchmarks

35 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Embedded data in YAML

1..4

ok 1 - established connection

ok 2 - checksum # SKIP no md5sum available

not ok 3 - transfer completed # TODO we know it fails

got error message "Bummer!"

Hello? I am a statement lost in code, help me out!

ok – transfer benchmarks

 benchmarks:

 pass1: 1234.56

 pass2: 999.99

 ...

36 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Transport Tapper meta-information

37 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Transport Tapper meta-information

1..4

ok 1 - established connection

ok 2 - checksum # SKIP no md5sum available

not ok 3 - transfer completed # TODO we know it fails

got error message "Bummer!“

Hello? I am a statement lost in code, help me out!

ok – transfer benchmarks

 benchmarks:

 pass1: 1234.56

 pass2: 999.99

 ...

38 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Transport Tapper meta-information

1..4

Tapper-Suite-Name: hello-world

ok 1 - established connection

ok 2 - checksum # SKIP no md5sum available

not ok 3 - transfer completed # TODO we know it fails

got error message "Bummer!“

Hello? I am a statement lost in code, help me out!

ok – transfer benchmarks

 benchmarks:

 pass1: 1234.56

 pass2: 999.99

 ...

39 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Transport Tapper meta-information

1..4

Tapper-Suite-Name: hello-world

Tapper-Reportgroup-Testrun: 244122

ok 1 - established connection

ok 2 - checksum # SKIP no md5sum available

not ok 3 - transfer completed # TODO we know it fails

got error message "Bummer!“

Hello? I am a statement lost in code, help me out!

ok – transfer benchmarks

 benchmarks:

 pass1: 1234.56

 pass2: 999.99

 ...

40 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Run and evaluate

Developer, locally

$ prove my_feature.sh # run + evaluate

41 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Run and evaluate

Developer, locally

$ prove my_feature.sh # run + evaluate

my_feature.sh .. ok

All tests successful.

Files=1, Tests=1, 3 wallclock secs (…)

Result: PASS

42 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Run and evaluate

Developer, locally

$ prove my_feature.sh # run + evaluate

my_feature.sh .. ok

All tests successful.

Files=1, Tests=1, 3 wallclock secs (…)

Result: PASS

 Inside Tapper

$ prove -e cat static_tap_results.tap # just evaluate

$ prove --formatter=TAP::Formatter::HTML … # render to HTML

43 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Rendering TAP

44 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

Everyone who can do TAP can participate.

46 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

Now put techology around it.

47 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TESTING

48 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP SUPPORT | Re-using and writing tests

Using tests: autotest

Writing tests: Tapper-autoreport

49 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP SUPPORT | Using tests - autotest

Autotest is a test project targeting the Linux kernel

Wraps lots of existing test and benchmark suites

AMD contributed TAP support as of autotest v0.13

– Convert test results and data to TAP + embedded YAML

– Bundle everything in TAP::Archive (.tar.gz of TAP + meta data)

autotest --tap tests/hackbench/control

Generic wrapper Tapper::TestSuite::AutoTest

– Downloads + installs autotest client from github or other URL

– Run and upload TAP to Tapper server

tapper-testsuite-autotest --test hackbench

– https://github.com/amd/Tapper-TestSuite-AutoTest

https://github.com/amd/Tapper-TestSuite-AutoTest
https://github.com/amd/Tapper-TestSuite-AutoTest
https://github.com/amd/Tapper-TestSuite-AutoTest
https://github.com/amd/Tapper-TestSuite-AutoTest
https://github.com/amd/Tapper-TestSuite-AutoTest

51 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP SUPPORT | Writing tests - tapper-autoreport (2)

Tapper-autoreport

A shell “include” (source) file

– You do what you normally do to test from shell

Will make your script magically behave like a Tapper testsuite

– Sends a TAP report to Tapper server

– Includes meta-information

– Uploads files

– No send+upload when run via “prove” for local test development

 Lots of ways to influence behaviour

– “Do What I Mean” parameters

– Environment variables

– Uses Tapper automation environment (e.g., Testrun-ID)

 https://github.com/amd/Tapper-autoreport

https://github.com/amd/Tapper-autoreport
https://github.com/amd/Tapper-autoreport
https://github.com/amd/Tapper-autoreport

52 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP SUPPORT | Writing tests - tapper-autoreport (3)

SYNOPSIS – shortest usage

#! /bin/bash

your testing here

. tapper-autoreport $? /tmp/my.log /tmp/results.dat

 “Do What I Mean” params

– $? … integers are interpreted as success/fails – useful for one-liners

– Existing filenames are attachments to be uploaded

53 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP SUPPORT | Writing tests - tapper-autoreport (3)

SYNOPSIS – shortest usage

#! /bin/bash

your testing here

. tapper-autoreport $? /tmp/my.log /tmp/results.dat

 “Do What I Mean” params

– $? … integers are interpreted as success/fails – useful for one-liners

– Existing filenames are attachments to be uploaded

54 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP SUPPORT | Writing tests - tapper-autoreport (3)

SYNOPSIS – shortest usage

#! /bin/bash

your testing here

. tapper-autoreport $? /tmp/my.log /tmp/results.dat

 “Do What I Mean” params

– $? … integers are interpreted as success/fails – useful for one-liners

– Existing filenames are attachments to be uploaded

55 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP SUPPORT | Writing tests - tapper-autoreport (4)

SYNOPSIS – use utility functions

#! /bin/bash

. tapper-autoreport --import-utils

your testing here

. tapper-autoreport $? /tmp/my.log /tmp/results.dat

Utility functions like

– ok $? “some description”

– negate_ok $? “some description”

– require_cpu_feature “cpb”

– require_family_range 0x12 0x15

– has_kernel_config CONFIG_SENSORS_FAM15H_POWER

56 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP SUPPORT | tapper-autoreport example

 “Vendor ID” – the issue

– Some data structure overflowed into the vendor ID in /proc/cpuinfo

– Sloppily check we are on AMD and skip all if not

– Check whether the full vendor string is correct

57 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP SUPPORT | tapper-autoreport example

 “Vendor ID” – the test

#! /bin/bash # vendor-id.sh

. tapper-autoreport --import-utils

TICKETURL='https://osrc/bugs/show_bug.cgi?id=901'

require_vendor_amd

grep -q 'vendor.*AuthenticAMD' /proc/cpuinfo

ok $? ”vendor string in /proc/cpuinfo”

. tapper-autoreport

58 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

TAP SUPPORT | tapper-autoreport example

 “Vendor ID” – the report

1..6

Tapper-suite-name: vendor-id

Tapper-machine-name: bascha

Tapper-ticket-url: https://osrc/bugs/show_bug.cgi?id=901

Tapper-uname: Linux bascha 2.6.35 #59-Ubuntu SMP Tue Aug 30 19:00:03 UTC 2011 x86_64 GNU/Linux

Tapper-osname: Ubuntu 10.10

Tapper-kernel: 2.6.35

Tapper-changeset: Linux version 2.6.35-30-generic (buildd@allspice) (gcc version 4.4.5 (Ubuntu…

Tapper-flags: root=UUID=6990cb5e-1a77-40b8-ba05-919f6c928607 ro quiet splash

Tapper-cpuinfo: 2 cores [AMD Athlon(tm) 64 X2 Dual Core Processor 6000+]

Tapper-ram: 2007

Tapper-starttime-test-program: Tue, 11 Oct 2011 14:48:04 +0200

ok – autoreport

ok – exitcode

 exitcode: 0

 ...

ok – success

ok - require_vendor_amd

ok - vendor string in /proc/cpuinfo

File upload: '/boot/config-2.6.35-30-generic„

File upload: 'vendor-id.sh„

File upload: '/proc/cpuinfo„

File upload: '/proc/devices„

File upload: '/proc/version„

61 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

Zero overhead to submit test results.

62 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

REPORT RESULTS | “Fire & forget”

Report via “fire & forget” into socket

 $ test_program.sh | netcat tapper 7357

– Easy

– On crashes you get as much as possible

– Still recognize the crash (planned vs. counted test lines)

63 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION

64 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION

66 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION | Overview (1)

Optional

Set up machines from scratch, over network

– Unpack prepared images (.iso, .tgz)

– Or run kickstart/autoyast/d-i distro installers

– Inject any other requirements

Allow virtualization setups

– Xen, KVM

– Inject into guests

Optionall via SSH

– Already prepared machines

– E.g., simnow, just inject kernel

67 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION | Overview (2)

Track serial console output, cover early boot problems

Hardware reset on epic fails

Time-out handling

– Virtualization-aware

Suspend/Resume support

Benchmarking infrastructure

68 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION | Overview (3)

Advanced scheduling

– Optimize machine utilisation

 “Too many” use-cases on “not enough” machines

 Use-case queues with bandwidths/priorities

 Different types of bandwidths (“official” vs. “non-official” to fill under-used machines)

 Choose host by complex feature expressions

– mem >= 4096 and vendor eq “AMD”

 Bind hosts to queues

– Allow multi-machine scenarios

 Network performance

 Guest migration

69 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION | Use-case bandwidths

70 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION | Synopsis (1)

SYNOPSIS

$ tapper-testrun newhost --name grizzly --active --queue simnow

$ tapper-testrun listhost --verbose

 ID | Name | Active | Testrun ID | Comment | Queues

 ==

 30 | blibb | active | 249876 | |

 31 | blobb | active | 249862 | | xen-unstable-pvops-64

 27 | blubb | active | 249529 | testplan experimenting | AdHoc

 22 | grizzly | active | free | | simnow

$ tapper-testrun listqueue

 ID | Name | Bandwidth

 10 | AdHoc | 1000

 98 | autoinstall-bare-rhel-6.2-64 | 200

 71 | autoinstall-bare-sles-11.2-64 | 200

 21 | xen-4.0-testing-32 | 50

 22 | xen-4.0-testing-64 | 50

 75 | xen-4.1-testing-pvops-32 | 300

 76 | xen-4.1-testing-pvops-64 | 300

71 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION | Synopsis (2)

SYNOPSIS

$ tapper-testrun listqueue --name AdHoc

 Id: 10

 Name: AdHoc

 Priority: 1000

 Active: yes

 Bound hosts: blubb, affe, zomtec

 Queued testruns (ids): 238772, 238773, 238774, 238785, 238786, 238787

$ tapper-testrun list --id 249532

 id: 249532

 topic: track-workload-stress-opensuse_11.4_32

 state: schedule

 queue: AdHoc

 requested hosts: blubb

 auto rerun: no

 precondition_ids: 224057, 224058, 224059, 224060, 224061

72 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION | Synopsis (3)

SYNOPSIS

$ tapper-testrun freehost --name grizzly --desc "known Xen hang, don‟t wait for timeout"

$ tapper-testrun newtestplan -v \

 --file topic/osrc/kernel/track-workload/track-workload_autoinstall \

 -Ddistros=rhel_6.1_64,sles_11.2_32 \

 -Dtests=hackbench,dbench

 Plan created

 id: 241

 url: http://tapper/tapper/testplan/id/241

 path: topic/osrc/kernel/track-workload/track-workload_autoinstall

 file: /data/tapper/live/testplan/topic/osrc/kernel/track-workload/track-workload_autoinstall

73 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION | Screenshots (1)

75 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION | Control

76 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

Here be dragons.

77 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Overview

 “Preconditions”

– YAML files describing the machine setup

– Automatically producible

– Human-readable

– Verifiable

– Tweakable

 “Do The Right Thing” internally, like always handle root image first

We auto-generate them from a database

– Test matrix of host/guest/workload/config combinations

78 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Synopsis

precondition_type: virt

name: automatically generated KVM test

host:

 root:

 precondition_type: autoinstall

 grub_text: "timeout 2\n\ntitle RedHat Testing\nkernel […] ks=[…] $TAPPER_OPTIONS […]“

 name: autoinstall-kvm-fedora-14

 timeout: 10000

 preconditions:

 - precondition_type: package

 filename: xen-pvops-d7e0e9f3.tar.gz

 testprogram_list:

 - execname: /opt/tapper/bin/tapper-testsuite-ctcs

 timeout_testprogram: 300

guests:

 - root:

 precondition_type: image

 …

 - root:

 precondition_type: image

 …

79 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Preconditions

Different types

– “Copy a file”, “unpack a package”

– “Base OS from image file”, “base OS from kickstart/autoyast”

– “Virtualization environment”

– “Execute test program”

– Lazy preconditions (“producer” plugins)

 “Use latest Xen package file by the time of scheduling”

 Combine that with “auto-rerun”

Different granularity for different needs

– Single preconditions

– Macro-preconditions (+ precompile pass with template language)

– Testplans (+ multiple machines, several testruns)

80 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan philosophy

Testplan developer vs. end user

 Internal power vs. external easiness

The testplan developer combines complexity to provide simplicity to the end user

– One single front-end file for the use-case

– Optional parameters

– Sensible defaults

– Self-documentation

$ tapper-testrun newtestplan --verbose \

 --file track-workload_autoinstall \

 -Ddistros=rhel_6.1_64,sles_11.2_32 \

 -Dtests=hackbench,dbench

81 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan example

The use-case:

– Schedule matrix of workloads over distros and machines

– Track perf counters to investigate the workload

– Upload perf logs

– Organize results to ease later evaluation

82 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan 1/8 – prepare params

[%#- -*- mode: tt -*- %]

tapper-description: Track performance counters over a workload

tapper-mandatory-fields:

tapper-optional-fields: tests, distros, machine

[%- PROCESS 'osrc/includes' -%]

[%- IF tests == '' %][% tests = 'hackbench' %][% END -%]

[%- IF distros == '' %][% distros = 'sles_11.2_64' %][% END -%]

[%- IF machine == '' %][% machine = 'grizzly' %][% END -%]

[%- IF title == '' %][% title = BLOCK %]\

 [% IF (tests.match(',')) %]MULTI\

 [% ELSE %][% tests %]\

 [% END %]\

 -\

 [% IF (distros.match(',')) %]MULTI\

 [% ELSE %][% distros %]\

 [% END %][% END %][% END -%]

[% AllTests = tests.split(',') %]

[% AllDistros = distros.split(',') %]

83 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan 2/8 – self-documentation

Track performance counters over several workloads.

Name : track-workload-[% title %]

Optional params:

-Dtests=<testname> Workload names, comma separated; default: hackbench

-Ddistros=<distro> Distro names, comma separated; default: sles_11.2_64

-Dmachine=<machine> Machine name; default: grizzly

Available values:

distros: [% FOREACH d = distro_list -%][% d %], [% END %]

tests: [% FOREACH t = useful_autotest_tests -%][% t %], [% END %]

84 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan 3/8 – open loops (distros + tests)

[%- FOREACH distro = AllDistros %]

[%- FOREACH test = AllTests %]

[% testrunsuffix = BLOCK %][% test %]-[% distro %][% END %]

[% Timeout = Timeout+10800 -%]

85 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan 4/8 – prepare distro details

[% IF distro == 'sles_11.2_64' %]

 [% install_file = 'autoyast=http://tapper/autoinstall/sles/11.2/x86_64/bare.xml' %]

 [% install_repo = 'install=ftp://osko/testing/sles/11.2/x86_64' %]

 [% install_opts = 'textmode=1' %]

 [% kernel = '/tftpboot/testing/sles/11.2/x86_64/linux' %]

 [% initrd = '/tftpboot/testing/sles/11.2/x86_64/initrd' %]

[% END %]

[% IF distro == 'rhel_6.1_64' %]

 [% install_file = 'ks=http://tapper/autoinstall/rhel/6.1/x86_64/bare.ks' %]

 [% install_repo = 'repo=ftp://osko/rhel/6.1/x86_64/os' %]

 [% install_opts = 'ksdevice=link' %]

 [% kernel = '/tftpboot/stable/rhel/6.1/x86_64/vmlinuz' %]

 [% initrd = '/tftpboot/stable/rhel/6.1/x86_64/initrd.img' %]

[% END %]

86 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan 5/8 – the actual spec begins

type: multitest

description:

 topic: track-workload-[% testrunsuffix %]

 requested_hosts_all:

 - [% machine %]

 preconditions:

87 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan 6/8 – setup OS and copy test files

 -

 precondition_type: autoinstall

 name: autoinstall-[% distro %]

 grub_text: "timeout 2\n\n\

 title [% distro %] Testing\n\

 kernel [% kernel %] \

 [% install_file %] \

 [% install_repo %] \

 [% install_opts %] \

 console=ttyS0,115200 $TAPPER_OPTIONS\n\

 initrd [% initrd %]\n"

 -

 precondition_type: copyfile

 protocol: local

 name: /data/tapper/testprograms/track-workload/*

 dest: /

88 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan 7/8 – test programs

 -

 precondition_type: testprogram

 program: /track-workload-pmc.sh

 -

 precondition_type: testprogram

 program: /opt/tapper/bin/tapper-testsuite-autotest

 parameters:

 - --source_url

 - file:///data/tapper/packages/autotest/osrc-autotest-snapshot.tar.gz

 - --test

 - [% test %]

 timeout: [% Timeout %]

 -

 precondition_type: testprogram

 program: /track-workload-upload-results.sh

89 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan 8/8 – close loops

[% END %][%# FOREACH AllTests %]

[% END %][%# FOREACH AllDistros %]

90 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan self-documentation

$ tapper-testrun newtestplan –-guide --file track-workload_autoinstall

91 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan self-documentation

$ tapper-testrun newtestplan –-guide --file track-workload_autoinstall

 Track performance counters over several workloads.

 Name : track-workload-hackbench-sles_11.2_64

 Optional params:

 -Dtests=<testname> Workload names, comma separated; default: hackbench

 -Ddistros=<distro> Distro names, comma separated; default: sles_11.2_64

 -Dmachine=<machine> Machine name; default: grizzly

 Available values:

 distros: rhel_6.1_64, sles_11.2_64, …

 tests: hackbench, dbench, tiobench, …

92 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan execution

$ tapper-testrun newtestplan --verbose \

 --file track-workload_autoinstall \

 -Ddistros=rhel_6.1_64,sles_11.2_32 \

 -Dtests=hackbench,dbench

93 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan execution

$ tapper-testrun newtestplan --verbose \

 --file track-workload_autoinstall \

 -Ddistros=rhel_6.1_64,sles_11.2_32 \

 -Dtests=hackbench,dbench

 Plan created

 id: 241

 url: http://tapper/tapper/testplan/id/241

 path: topic/osrc/kernel/track-workload/track-workload_autoinstall

 file: /data/tapper/[…]topic/osrc/kernel/[…]/track-workload_autoinstall

95 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Screenshots (1)

96 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Screenshots (2)

99 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Screenshots (5)

100 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Screenshots (6)

101 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Screenshots (7)

102 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

EVALUATE RESULTS

103 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

RESULTS

104 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

EVALUATE RESULTS | What do we have so far?

Remember: we dropped TAP into Tapper with “fire & forget” (netcat)

– Hide internal complexity

 Actual success status

 Aggregated results

 Report groups

 Meta-information

 Embedded YAML data

 Any sufficiently advanced technology

– TAP::Parser

– TAP::DOM

– TAP::Formatter::HTML

– Databases

– Etc.

How to trivially access results?

106 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

EVALUATE RESULTS | The no-problem

Web application for “end users”

– RED / YELLOW / GREEN

– Cautious but useful Javascript

– Overviews, details, attachments

– List, filters, RSS feeds

108 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

EVALUATE RESULTS | The no-problem - screenshots (2)

110 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

EVALUATION | Query API

111 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

QUERY API | The query gap

Scriptable querying

– The same ease as reporting

– Again: shell level, netcat

Use-cases

– Generally access our own reports

 Data + attachments

– Track test success over time

– Track benchmark results

– Custom-visualize the data

Challenges

– Test suites change over time  fuzzy find

– Hide the toolchain

112 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

QUERY API | The solution

Provide template mechanism

With embedded query language “DPath”

Dialog-oriented protocol

– HERE-doc style

–  Send template with “netcat”

–  Receive processed content

113 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

QUERY API | Example 1 – Get simple values

Command
 $ cat report.mas | netcat tapper 7358 > result.txt

Template

#! tt <<EOTEMPLATE

Planned tests:

[% FOREACH x IN reportdata('{ "suite.name" => "power_msr" } :: //tap/tests_planned') -%]

 [% x %]

[% END %]

EOTEMPLATE

Result

Planned tests:

 3

 4

 17

114 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

QUERY API | Example 2 – Fill a GNUPLOT file

Command
 $ cat CTCS_ratio.gnuplot | netcat tapper 7358 | gnuplot

Template

#! tt <<EOTEMPLATE

TITLE = "success ratio: CTCS“

set output "CTCS_ratio.png"

plot '-' using 0:2 with linespoints

[% time = reportdata('...') %]

[% ratio = reportdata('...') %]

[% FOREACH i IN … %]

 [% time.$i %] [% ratio.$i %]

[% END %]

EOTEMPLATE

Result

– Generated file "CTCS_ratio.png"

115 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

QUERY API | Example 2 – Fill a GNUPLOT file

Command
 $ cat CTCS_ratio.gnuplot | netcat tapper 7358 | gnuplot

Template

#! tt <<EOTEMPLATE

TITLE = "success ratio: CTCS“

set output "CTCS_ratio.png"

plot '-' using 0:2 with linespoints

[% time = reportdata('...') %]

[% ratio = reportdata('...') %]

[% FOREACH i IN … %]

 [% time.$i %] [% ratio.$i %]

[% END %]

EOTEMPLATE

Result

– Generated file "CTCS_ratio.png"

118 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

Did you notice? No client-side toolchain dependencies!

119 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

QUERY API | How does it work?

TAP::DOM

– A data structure (DOM) out of TAP

120 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

QUERY API | How does it work?

TAP::DOM

– A data structure (DOM) out of TAP

{ 'tests_planned' => 6

 'tests_run' => 8,

 # […]

 'summary' => {

 'status' => 'FAIL',

 'total' => 8,

 'passed' => 6,

 'failed' => 2,

 'skipped' => 1,

 'todo' => 4,

 'todo_passed' => 2,

 # […]

 },

 'lines' => [

 { 'number' => '1',

 'is_ok' => 1,

 'description' => '- connection established',

 '_children' => [# subsequent comments/yaml

 { 'is_yaml' => 1,

 'data' => [{'pass1' => '1234.56',

 'pass2' => '999.99' }] }

 # [… lines …]

] } }

121 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

QUERY API | How does it work?

TAP::DOM

– A data structure (DOM) out of TAP

DPath to fuzzy navigate data

– XPath-like

{ 'tests_planned' => 6

 'tests_run' => 8,

 # […]

 'summary' => {

 'status' => 'FAIL',

 'total' => 8,

 'passed' => 6,

 'failed' => 2,

 'skipped' => 1,

 'todo' => 4,

 'todo_passed' => 2,

 # […]

 },

 'lines' => [

 { 'number' => '1',

 'is_ok' => 1,

 'description' => '- connection established',

 '_children' => [# subsequent comments/yaml

 { 'is_yaml' => 1,

 'data' => [{'pass1' => '1234.56',

 'pass2' => '999.99' }] }

 # [… lines …]

] } }

122 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

QUERY API | How does it work?

TAP::DOM

– A data structure (DOM) out of TAP

DPath to fuzzy navigate data

– XPath-like

'/tests_planned'

{ 'tests_planned' => 6

 'tests_run' => 8,

 # […]

 'summary' => {

 'status' => 'FAIL',

 'total' => 8,

 'passed' => 6,

 'failed' => 2,

 'skipped' => 1,

 'todo' => 4,

 'todo_passed' => 2,

 # […]

 },

 'lines' => [

 { 'number' => '1',

 'is_ok' => 1,

 'description' => '- connection established',

 '_children' => [# subsequent comments/yaml

 { 'is_yaml' => 1,

 'data' => [{'pass1' => '1234.56',

 'pass2' => '999.99' }] }

 # [… lines …]

] } }

123 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

QUERY API | How does it work?

TAP::DOM

– A data structure (DOM) out of TAP

DPath to fuzzy navigate data

– XPath-like

'/tests_planned'

'//tests_planned'

{ 'tests_planned' => 6

 'tests_run' => 8,

 # […]

 'summary' => {

 'status' => 'FAIL',

 'total' => 8,

 'passed' => 6,

 'failed' => 2,

 'skipped' => 1,

 'todo' => 4,

 'todo_passed' => 2,

 # […]

 },

 'lines' => [

 { 'number' => '1',

 'is_ok' => 1,

 'description' => '- connection established',

 '_children' => [# subsequent comments/yaml

 { 'is_yaml' => 1,

 'data' => [{'pass1' => '1234.56',

 'pass2' => '999.99' }] }

 # [… lines …]

] } }

124 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

QUERY API | How does it work?

TAP::DOM

– A data structure (DOM) out of TAP

DPath to fuzzy navigate data

– XPath-like

'/tests_planned'

'//tests_planned'

'//todo_passed'

{ 'tests_planned' => 6

 'tests_run' => 8,

 # […]

 'summary' => {

 'status' => 'FAIL',

 'total' => 8,

 'passed' => 6,

 'failed' => 2,

 'skipped' => 1,

 'todo' => 4,

 'todo_passed' => 2,

 # […]

 },

 'lines' => [

 { 'number' => '1',

 'is_ok' => 1,

 'description' => '- connection established',

 '_children' => [# subsequent comments/yaml

 { 'is_yaml' => 1,

 'data' => [{'pass1' => '1234.56',

 'pass2' => '999.99' }] }

 # [… lines …]

] } }

125 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

QUERY API | How does it work?

TAP::DOM

– A data structure (DOM) out of TAP

DPath to fuzzy navigate data

– XPath-like

'/tests_planned'

'//tests_planned'

'//todo_passed'

'//data//pass2'

{ 'tests_planned' => 6

 'tests_run' => 8,

 # […]

 'summary' => {

 'status' => 'FAIL',

 'total' => 8,

 'passed' => 6,

 'failed' => 2,

 'skipped' => 1,

 'todo' => 4,

 'todo_passed' => 2,

 # […]

 },

 'lines' => [

 { 'number' => '1',

 'is_ok' => 1,

 'description' => '- connection established',

 '_children' => [# subsequent comments/yaml

 { 'is_yaml' => 1,

 'data' => [{'pass1' => '1234.56',

 'pass2' => '999.99' }] }

 # [… lines …]

] } }

126 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

QUERY API | How does it work?

TAP::DOM

– A data structure (DOM) out of TAP

DPath to fuzzy navigate data

– XPath-like

'/tests_planned'

'//tests_planned'

'//todo_passed'

'//data//pass2'

'//lines/*/is_ok'

{ 'tests_planned' => 6

 'tests_run' => 8,

 # […]

 'summary' => {

 'status' => 'FAIL',

 'total' => 8,

 'passed' => 6,

 'failed' => 2,

 'skipped' => 1,

 'todo' => 4,

 'todo_passed' => 2,

 # […]

 },

 'lines' => [

 { 'number' => '1',

 'is_ok' => 1,

 'description' => '- connection established',

 '_children' => [# subsequent comments/yaml

 { 'is_yaml' => 1,

 'data' => [{'pass1' => '1234.56',

 'pass2' => '999.99' }] }

 # [… lines …]

] } }

127 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

QUERY API | Anatomy of a Tapper::DPath

{ suite_name => "CTCS" } :: //tests_planned[value > 10]/../summary/passed

Virtual DOM of the TAP database

Two orthogonal concepts

– Database axis: provide but hide relational access

 SQL::Abstract

 The “history of reports”

– Report axis: inside single reports data structure

 TAP::DOM

 Data::DPath

 Inside “one point in history”

128 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

MORE

129 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

MORE | Topics

Benchmark sub-infrastructure

– Subscribe to incoming data with DPaths (//data//codespeed/*)

– Pass-through to benchmark rendering application  Codespeed

 Integration with TaskJuggler

– Map task IDs to filesystem hierarchy of testplan files

 osrc.productfoo.xen.power_msr.xen4_3  osrc/productfoo/xen/power_msr/xen4_3

 Schedule testruns by taskjuggler task dates

 Report back results per E-Mail as TaskJuggler timesheets

 TaskJuggler renders project status from that

Deployment

– Bootstrap your own infrastructure

– Create utility images, client packages

130 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

SUMMARY

132 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

SUMMARY | Framework

Complete testing environment fitting several parties’ needs

– Test team

 Automation to run machine pool

– Developer / Tester

 Support on developing and running tests

 Locally and/or automated

– Manager / Tester

 Visual presentation of test results

 QA lifecycle, driven by planning software

Built on top of open source standards

Provide complexity – allow simplicity

The End – Thank You!

133 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions.

Other names used in this presentation are for identification purposes only and may be trademarks of their respective owners.

©2011 Advanced Micro Devices, Inc. All rights reserved.

134 | Linux Testing with Tapper – Complexity in a nutshell | October 28, 2011 | Public

http://amd64.org/mailman/listinfo/tapper

irc.freenode.net / #tapper

github.com/amd

http://amd64.org/mailman/listinfo/tapper
http://amd64.org/mailman/listinfo/tapper
http://amd64.org/mailman/listinfo/tapper
http://amd64.org/mailman/listinfo/tapper
http://amd64.org/mailman/listinfo/tapper
http://webchat.freenode.net/?channels=tapper
http://webchat.freenode.net/?channels=tapper
https://github.com/amd
https://github.com/amd
https://github.com/amd

