LINUX TESTING WITH TAPPER
Complexity in a nutshell

Steffen Schwigon, AMD Operating System Research Center
October 28, 2011
Public

AMD({1

OVERVIEW | Abstract

The Operating System Research Center (OSRC), a global AMD Research organisation headquartered in
Dresden, Germany, acts as a bridge between the OS development community and the worldwide AMD
processor design community.

At the OSRC we run a test infrastructure to test Linux in many orthogonal dimensions: hardware
generations, software visible features, kernel branches, Linux-based distributions, virtualization with
upstream or distro-specific Xen and KVM, multi-machine scenarios, and running in simulators. Inside of
those dimensions we cover regression, functional, and stress tests, benchmarks, guest migration, and
reboot and suspend/resume tests.

This talk will give an overview of our test infrastructure (codename "Tapper") and dive deeper into some
interesting technical topics like the machine scheduler and the query interface, show the combination of
open-source standard protocols and tools to glue everything together, and how we break down that
complexity into easy but powerful, scriptable APIs with no client-side toolchain dependencies for the users.

AMDZ1

3 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

OVERVIEW | Context

= Operating System Research Center (OSRC)

= We developed and run a test infrastructure called Tapper
— Automated testing of operating systems and virtualization (Xen/KVM)
— Published as open source in 2011

= OQverview: http://developer.amd.com/zones/opensource/AMDTapper
= Mailing list: http://www.amd64.org/mailman/listinfo/tapper
= Source: http://github.com/amd

4 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

http://developer.amd.com/zones/opensource/AMDTapper
http://developer.amd.com/zones/opensource/AMDTapper
http://www.amd64.org/mailman/listinfo/tapper
http://www.amd64.org/mailman/listinfo/tapper
http://github.com/amd
http://github.com/amd
http://github.com/amd

OVERVIEW | Agenda

= Overview
— Mission
— Test approaches
— Test infrastructure
— Automation
— Web GUI
= Testing
— Understanding the test protocol
— From visible simplicity to hidden complexity
= Automation
= Result evaluation
— From hidden complexity back to visible simplicity

5 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

SCOPE | Mission

= OS distribution testing
— Partner distributions: Novell (SLES), Red Hat (RHEL)
— Community distributions: openSuse, Fedora, (Debian, Ubuntu)
— Windows, as guest
= Linux kernel
— OSRC contributions
— Regressions (“Attack of the alien patches”)
= Virtualization
— Xen
— KVM
= AMD hardware

= > Combinations of all the above

AMDZ1

7 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

TEST APPROACHES | 1/3: Functional testing

= Functional testing of Linux kernel
— = “Classic QA”
— For OSRC enablement work
— Iterate Linux kernel + hardware + developer repositories

9 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TEST APPROACHES | 2/3: Virtualization matrix

= Virtualization matrix
— => Find new problems
— Distro Xen/KVM vs. upstream releases
— Huge matrix of host/guest combinations
— Stress system (use benchmarks in guests)
— lterate Xen/KVM + hardware

10 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TEST APPROACHES | 3/3: Testplans

= Testplans
— = Ensure no regressions
— Dedicated scenarios for points of interest
— Bridge to “TaskJuggler” planning software

= Bi-directional: scheduling + reporting

— On top of the other approaches

11 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

OVERVIEW | Test infrastructure

AMDZ1

BASIC PRINCIPLES

= Test infrastructure “Tapper” -- basic principles:

— Zero overhead to write tests and report results
— Flexible evaluation: easy web GUI + scriptable API
— Optional but advanced automation

Automation
Framework

Test
Suites

TAP

14 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

Reports
Framework

AMDZ1

BASIC PRINCIPLES

= Test infrastructure “Tapper” -- basic principles:

— Zero overhead to write tests and report results

— Flexible evaluation: easy web GUI + scriptable API

— Optional but advanced automation

Automation
Framework

Test
Suites

TAP

15 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

Reports
Framework

AMDZ1

BASIC PRINCIPLES

= Test infrastructure “Tapper” -- basic principles:

— Zero overhead to write tests and report results

— Flexible evaluation: easy web GUI + scriptable API

— Optional but advanced automation

Automation
Framework

Test
Suites

TAP

16 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

Reports
Framework

AMDZ1

BASIC PRINCIPLES | Zero overhead

= Zero overhead to write tests
— Just respect the test protocol (“TAP”)

1..3
ok - feature 'foo' available
ok - expected return value

not ok - memory cleaned up

= Zero overhead to report results
— “Fire & forget” into socket

test program.sh | netcat tapper 7357

17 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

BASIC PRINCIPLES | Advanced automation

= Boot machines from network and set up from scratch
— Optionally reuse machines via SSH

= Track serial console output

= Hardware reset on epic fails

= Virtualization setups

= Complex timeout handling

= Optimize machine utilisation

= Bandwidth-driven multiplexing of “too many” use-cases on “not enough” machines
= Allow multi-machine scenarios
= Network performance, guest migration

= Benchmarking infrastructure

18 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

BASIC PRINCIPLES | Evaluation

= Scriptable query interface
= Web interface

File Edit View History Bookmarks Tools Help

| [@] Tapper

|+

Testruns Metareports Hardware Manual

220116: KernBench

reportid: 220116 [2) 201

Testrun

ID DateTime (GMT)
1220169 2011-03-24 13:12
2011-03-24 13:12
2011-03-24 13:12
2011-03-24 13:12
2011-03-24 10:54
2011-03-24 03:11
2011-03-24 02:00

Test Execution Context

Host-Overview (1219576)

Metainio
ram
cpuinfo:
uptime:

KVNHMetainfo
kvm_module_version:
kvm_userspace_version
Kvm_|
kvm

el
_0s_description.

Done

0324 10:54:30 GMT Host: “kobol d:takujui

Suite Machine
& Topic-auloinstall-kvm-rhel-5.6 & kobold
a a
L] L]
a o
a -]
L] o
a a
5019 MB

2x Family: 16, Model: 2, Stepping: 2
1hrs

kvm-83-224.el5
kvm-83-maint-snapshot-20090205
26.18-238.15 XB6_64

KernBench
Success Ratio Grouped by
& FAIL ™ lestrun 181155 (artemis)
a

I -l -l

B

Red Hat Enterprise Linux Server release 5.6 (Tikanga)

sp4_tc1_32bpae_raw

19 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TESTING

AMDZ1

The central ideais not a technology but a protocol.

21 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

The central ideais not a technology but a protocol.

(a standard one with already existing technology)

22 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP INTRO | Philosophy

= No obligatory API how to write test
= But standard protocol to declare test results

= “Test Anything Protocol” (TAP)

— Easy to generate

= OS testing - be prepared to have nothing
= Still easy when printf/printk/echo is everything you have

= However, lots of toolchains optionally available
— Scales from simplicity to complexity
— http://testanything.org

— http://amd64.org/fileadmin/user upload/pub/yapc eu 2011 tapjugqling.pdf

24 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

http://testanything.org/
http://amd64.org/fileadmin/user_upload/pub/yapc_eu_2011_tapjuggling.pdf

TAP INTRO | Basics

= Line-based

= Starts with a plan (“1..3”) — how many test lines expected
= Some “ok” test lines

= Some “not ok’ testlines

= Directives “# TODO” / “# SKIP” on testlines

= Comment lines starting with “#”

= Unrecognized lines are ignored

25 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP INTRO | Synopsis

ok
ok

not ok

= Plan and ok/not ok lines

AMDZ1

26 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Synopsis

1..3
ok - established connection
ok - checksum

not ok - transfer completed

= Plan and ok/not ok lines
= Test line descriptions

27 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP INTRO | Synopsis

1..3

ok - established connection
ok - checksum

not ok - transfer completed

got error message "Bummer!"

= Plan and ok/not ok lines
= Test line descriptions
= Comment lines

28 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP INTRO | Synopsis

1..3

ok - established connection

ok - checksum

not ok - transfer completed # TODO we know it fails

got error message "Bummer!"

= Plan and ok/not ok lines
= Test line descriptions

= Comment lines

= Directives # TODO

AMDZ1

29 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Synopsis

1..3

ok - established connection

ok - checksum # SKIP no md5Ssum available

not ok - transfer completed # TODO we know it fails

got error message "Bummer!"

= Plan and ok/not ok lines

= Test line descriptions

= Comment lines

= Directives # TODO / # SKIP

AMDZ1

30 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

TAP INTRO | Synopsis

1..3

ok - established connection

ok - checksum # SKIP no md5Ssum available

not ok - transfer completed # TODO we know it fails
got error message "Bummer!"

Hello? I am a statement lost in code, help me out!

= Plan and ok/not ok lines

= Test line descriptions

= Comment lines

= Directives # TODO / # SKIP

= Unrecognized lines are ignored

31 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP INTRO | Synopsis

1..3

ok 1 - established connection

ok 2 - checksum # SKIP no md5Ssum available

not ok 3 - transfer completed # TODO we know it fails
got error message "Bummer!"

Hello? I am a statement lost in code, help me out!

= Plan and ok/not ok lines — optionally numbered
= Test line descriptions

= Comment lines

= Directives # TODO / # SKIP

= Unrecognized lines are ignored

32 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP INTRO | Embedded data

1..3

ok 1 - established connection

ok 2 - checksum # SKIP no md5Ssum available

not ok 3 - transfer completed # TODO we know it fails
got error message "Bummer!"

Hello? I am a statement lost in code, help me out!

33 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP INTRO | Embedded data

1..4

ok 1 - established connection

ok 2 - checksum # SKIP no md5Ssum available

not ok 3 - transfer completed # TODO we know it fails
got error message "Bummer!"

Hello? I am a statement lost in code, help me out!

ok - transfer benchmarks

34 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP INTRO | Embedded data in YAML

1..4
ok 1 - established connection
ok 2 - checksum # SKIP no md5Ssum available
not ok 3 - transfer completed # TODO we know it fails
got error message "Bummer!"
Hello? I am a statement lost in code, help me out!
ok — transfer benchmarks
benchmarks:
passl: 1234.56
pass2: 999.99

35 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP INTRO | Transport Tapper meta-information

36 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP INTRO | Transport Tapper meta-information

ok 1 - established connection
ok 2 - checksum # SKIP no md5Ssum available
not ok 3 - transfer completed # TODO we know it fails
got error message "Bummer!™“
Hello? I am a statement lost in code, help me out!
ok - transfer benchmarks
benchmarks:
passl: 1234.56
pass2: 999.99

37 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP INTRO | Transport Tapper meta-information

1..4
Tapper-Suite-Name: hello-world

ok 1 - established connection
ok 2 - checksum # SKIP no md5Ssum available
not ok 3 - transfer completed # TODO we know it fails
got error message "Bummer!™“
Hello? I am a statement lost in code, help me out!
ok - transfer benchmarks
benchmarks:
passl: 1234.56
pass2: 999.99

38 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP INTRO | Transport Tapper meta-information

1..4
Tapper-Suite-Name: hello-world
Tapper-Reportgroup-Testrun: 244122
ok 1 - established connection
ok 2 - checksum # SKIP no md5Ssum available
not ok 3 - transfer completed # TODO we know it fails
got error message "Bummer!™“
Hello? I am a statement lost in code, help me out!
ok - transfer benchmarks
benchmarks:
passl: 1234.56
pass2: 999.99

39 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP INTRO | Run and evaluate

= Developer, locally

$ prove my feature.sh

run + evaluate

40 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP INTRO | Run and evaluate

= Developer, locally

$ prove my feature.sh

my feature.sh .. ok

All tests successful.

Files=1, Tests=1, 3 wallclock secs (

Result: PASS

run + evaluate

41 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP INTRO | Run and evaluate

= Developer, locally

$ prove my feature.sh

my feature.sh .. ok

All tests successful.

Files=1, Tests=1, 3 wallclock secs (

Result: PASS

= Inside Tapper

$ prove -e cat static tap results.tap

$ prove --formatter=TAP: :Formatter::HTML ..

42 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

run + evaluate

just evaluate
render to HTML

AMDZ1

TAP INTRO | Rendering TAP

File Edit View History Bookmarks Tools

Help
| [¢] tapper |+

tapper

Testruns Metareports

209083: AutoTest-hackbench

report id: 200083 7 2011-03.22 09

reports by date
Host: bullock

d
Test Execution Context

s
1 week
2 weeks =
Test results 3 weeks
1 month
2 months
PASSED 4 months
6 months
. 12 months

Test file Tesi resulis
hackbench/keyval.tap

reporis by suite
TAP Version 13

reports by host
ok 1 - resulls
version: 1

ok 2 - results 100.0%

sysinfo-cmdline: root=/devisda2 console=ttyS0,115200 earlyprintk=ttyS0,115200 debug ignore_loglevel
sysinfo-memtotal-in-kb: 4055248
sysinfo-phys-mbyles: 4096

sysinfo-uname: 2.6.38-rc6-ip-e9ff23be-hans+ #1 SMP Fri Mar 18 17:55:07 CET 2011 x86_64 x86_64 x86_64 GNU/Linux

hackbench/results

; 100.0%
’keyval.tap
hackbench/status.tap 100.0%
status tan
Done

100 %

AMDZ1
43 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

Everyone who can do TAP can participate.

44 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

Now put techology around it.

46 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TESTING

Automation
Framework

Test
Suites

TAP

47 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

Reports
Framework

AMDZ1

TAP SUPPORT | Re-using and writing tests

= Using tests: autotest
= Writing tests: Tapper-autoreport

48 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP SUPPORT | Using tests - autotest

= Autotest is a test project targeting the Linux kernel
= Wraps lots of existing test and benchmark suites
= AMD contributed TAP support as of autotest v0.13
— Convert test results and data to TAP + embedded YAML
— Bundle everything in TAP::Archive (.tar.gz of TAP + meta data)

autotest --tap tests/hackbench/control

= Generic wrapper Tapper::TestSuite::AutoTest
— Downloads + installs autotest client from github or other URL
— Run and upload TAP to Tapper server

tapper-testsuite-autotest --test hackbench

— https://github.com/amd/Tapper-TestSuite-AutoTest

49 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

https://github.com/amd/Tapper-TestSuite-AutoTest
https://github.com/amd/Tapper-TestSuite-AutoTest
https://github.com/amd/Tapper-TestSuite-AutoTest
https://github.com/amd/Tapper-TestSuite-AutoTest
https://github.com/amd/Tapper-TestSuite-AutoTest

TAP SUPPORT | Writing tests - tapper-autoreport (2)

= Tapper-autoreport
= A shell “include” (source) file
— You do what you normally do to test from shell
= Will make your script magically behave like a Tapper testsuite
— Sends a TAP report to Tapper server
— Includes meta-information
— Uploads files
— No send+upload when run via “prove” for local test development
= Lots of ways to influence behaviour
— “Do What | Mean” parameters
— Environment variables
— Uses Tapper automation environment (e.g., Testrun-ID)
= https://qgithub.com/amd/Tapper-autoreport

51 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

https://github.com/amd/Tapper-autoreport
https://github.com/amd/Tapper-autoreport
https://github.com/amd/Tapper-autoreport

TAP SUPPORT | Writing tests - tapper-autoreport (3)

» SYNOPSIS - shortest usage
#! /bin/bash

your testing here
tapper-autoreport $? /tmp/my.log /tmp/results.dat

= “Do What | Mean” params

— $7? ... integers are interpreted as success/fails — useful for one-liners
— Existing filenames are attachments to be uploaded

52 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP SUPPORT | Writing tests - tapper-autoreport (3)

» SYNOPSIS - shortest usage
#! /bin/bash

your testing here
tapper-autoreport $? /tmp/my.log /tmp/results.dat

= “Do What | Mean” params

— $? ... integers are interpreted as success/fails — useful for one-liners
— Existing filenames are attachments to be uploaded

53 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP SUPPORT | Writing tests - tapper-autoreport (3)

» SYNOPSIS - shortest usage
#! /bin/bash

your testing here
tapper-autoreport $? /tmp/my.log /tmp/results.dat

= “Do What | Mean” params

— $7? ... integers are interpreted as success/fails — useful for one-liners
— Existing filenames are attachments to be uploaded

54 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP SUPPORT | Writing tests - tapper-autoreport (4)

= SYNOPSIS — use utility functions

#! /bin/bash

tapper—-autoreport --import-utils

your testing here

tapper—-autoreport $? /tmp/my.log /tmp/results.dat

= Utility functions like

55

— ok $? “some description”

— negate ok $? “some description”
— require cpu feature “cpb”

— require family range 0x12 0x15

— has kernel config CONFIG SENSORS FAMI5H POWER

Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP SUPPORT | tapper-autoreport example

= “VVendor ID” — the issue

— Some data structure overflowed into the vendor ID in /proc/cpuinfo
— Sloppily check we are on AMD and skip all if not
— Check whether the full vendor string is correct

56 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP SUPPORT | tapper-autoreport example

= “Vendor ID” — the test
#! /bin/bash # vendor-id.sh
tapper-autoreport --import-utils
TICKETURL="'https://osrc/bugs/show bug.cgi?id=901"
require vendor amd
grep -g 'vendor.*AuthenticAMD' /proc/cpuinfo

ok $? ”vendor string in /proc/cpuinfo”

tapper-autoreport

57 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

TAP SUPPORT | tapper-autoreport example

= “Vendor ID” — the report

1..6

Tapper-suite-name: vendor-id

Tapper-machine-name: bascha

Tapper-ticket-url: https://osrc/bugs/show_bug.cgi?id=901

Tapper-uname: Linux bascha 2.6.35 #59-Ubuntu SMP Tue Aug 30 19:00:03 UTC 2011 x86_ 64 GNU/Linux
Tapper-osname: Ubuntu 10.10

Tapper-kernel: 2.6.35

Tapper-changeset: Linux version 2.6.35-30-generic (buildd@allspice) (gcc version 4.4.5 (Ubuntu..
Tapper-flags: root=UUID=6990cbbe-1a77-40b8-ba05-919f6c928607 ro quiet splash

Tapper-cpuinfo: 2 cores [AMD Athlon(tm) 64 X2 Dual Core Processor 6000+]

Tapper-ram: 2007

Tapper-starttime-test-program: Tue, 11 Oct 2011 14:48:04 +0200

ok — autoreport
ok - exitcode

exitcode: 0

ok - success

ok - require_ vendor_amd

ok - vendor string in /proc/cpuinfo

File upload: '/boot/config-2.6.35-30-generic®

File upload: 'vendor-id.sh®
File upload: '/proc/cpuinfo®
File upload: '/proc/devices®
File upload: '/proc/version®
AMDZT
58 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

Zero overhead to submit test results.

61 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

REPORT RESULTS | “Fire & forget”

= Report via “fire & forget” into socket

$ test program.sh | netcat tapper 7357

— Easy
— On crashes you get as much as possible
— Still recognize the crash (planned vs. counted test lines)

62 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION

AMDZ1

AUTOMATION

Automation
Framework

Test
Suites

TAP

64 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

Reports
Framework

AMDZ1

AUTOMATION | Overview (1)

= Optional
= Set up machines from scratch, over network
— Unpack prepared images (.iso, .tgz)
— Or run kickstart/autoyast/d-i distro installers
— Inject any other requirements
= Allow virtualization setups
— Xen, KVM
— Inject into guests
= Optionall via SSH
— Already prepared machines
— E.g., simnow, just inject kernel

AMDZ1

66 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION | Overview (2)

= Track serial console output, cover early boot problems
= Hardware reset on epic fails
= Time-out handling
— Virtualization-aware
= Suspend/Resume support
= Benchmarking infrastructure

67 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION | Overview (3)

= Advanced scheduling

— Optimize machine utilisation
» “Too many” use-cases on “not enough” machines
= Use-case queues with bandwidths/priorities
= Different types of bandwidths (“official” vs. “non-official” to fill under-used machines)
= Choose host by complex feature expressions

— mem >= 4096 and vendor eqgq “AMD”

» Bind hosts to queues

— Allow multi-machine scenarios
= Network performance

= Guest migration

AMDZ1

68 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION | Use-case bandwidths

Weekly XEN testing effort per Platform

20

64 bit tests

10

3.1.2-194 el5

3.4.4-rcl-pre

4.0.2-rcl-pre

4.1-unstable

CHEETAH (DR-B2I)

CHEETAH (DR-B3N)

DINAR (HY-DOA)

INTEL-VT (UNKNOWN)

PC-WARE (BH-F2I)

PC-WARE (BH-G1B)

PC-WARE (BL-C2A)

PC-WARE (JH-F2G)

PENCE2 (HY-D1C)

TILAPIA (PH-EDA)

TOONIE (RB-C2G)

WARTHOG (IH-F2G)

alo|r|el=|o|r|n|o]ole]o

69 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

] [N} ') Ko K=Y S FA) GOV) NC) Y) Y

B (=Y [N P N -] S Y - e

pllu|wlnv|[clwln| = o|lw

AMDZ1

AUTOMATION | Synopsis (1)

* SYNOPSIS

$ tapper-testrun newhost --name grizzly --active

$ tapper-testrun listhost --verbose

-—gqueue simnow

xen-unstable-pvops-64

AdHoc

ID | Name | Active | Testrun ID | Comment
30 | blibb | active | 249876 |
31 | blobb | active | 249862 |
27 | blubb | active | 249529 | testplan experimenting
22 | grizzly | active | free |

$ tapper-testrun listqueue

ID Name
10 AdHoc
98 autoinstall-bare-rhel-6.2-64

| |
| |
| |
71 | autoinstall-bare-sles-11.2-64 |
| |
| |
| |
| |

21 xen—-4.0-testing-32
22 xen-4.0-testing-64
75 xen—-4.l-testing-pvops-32
76 xen—-4.l-testing-pvops-64

Bandwidth
1000

200

200

50

50

300

300

70 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

simnow

AMDZ1

AUTOMATION | Synopsis (2)

* SYNOPSIS

$ tapper-testrun listqueue --name AdHoc

Id: 10

Name: AdHoc

Priority: 1000

Active: yes

Bound hosts: blubb, affe, zomtec

Queued testruns (ids): 238772, 238773, 238774, 238785,

$ tapper-testrun list --id 249532

id: 249532

topic: track-workload-stress-opensuse 11.4 32
state: schedule

queue: AdHoc

requested hosts: blubb

auto rerun: no

precondition ids: 224057, 224058, 224059, 224060,

224061

238786,

238787

71 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION | Synopsis (3)

* SYNOPSIS

$ tapper-testrun freehost --name grizzly --desc "known Xen hang, don’t wait for timeout"

$ tapper-testrun newtestplan -v \
--file topic/osrc/kernel/track-workload/track-workload autoinstall \
-Ddistros=rhel 6.1 64,sles 11.2 32 \
-Dtests=hackbench, dbench
Plan created

id: 241

url: http://tapper/tapper/testplan/id/241

path: topic/osrc/kernel/track-workload/track-workload autoinstall

file: /data/tapper/live/testplan/topic/osrc/kernel/track-workload/track-workload autoinstall

AMDZ1

72 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION | Screenshots (1)

@ S lasti2/days - Mozillz Firefox:

Firefoxv || | tapper # | [] Testruns of last 2 days 3 || | Testruns of last 2 days % ||+ &

p—

Testruns Reports Testplans Metareports Manual

Automated testruns of last 2 days Testruns by date
t
1 week
This list shows automated testruns. Links in columns ID show details of single report; on column Suite show all reports of this suite; on column Machine show all reports on this machine. 2 weeks
If you look for more finegrained results not limited to the automation system try Reports. 3 weeks
1 month
Eri Oct 14, 2011 2 months
ID DateTime (GMT) Topic Machine state Ratio Owner Control
1rz30344 2011-10-14 13:02 & Misc & No host assigned & schedule & tapper
1r250343 2011-10-14 14:34 & track-workload-hackbench-rhelé.1 64 = No host assigned = schedule £ tapper Create new Testrun
1r250342 2011-10-14 14:54 &1 track-workload-stress-rhel6.1_64 £ No host assigned £ schedule & tapper E—
1r250341 2011-10-14 14:54 &1 track-workload-hackbench-sles11.2_64 i No host assigned & schedule & tapper
r250340 20111014 12:54 & track-workload stress-sles1.2_b¢ == athene & running = tapper Active Filters
1r250339 2011-10-14 14:52 &I MisC & No host assigned &3 schedule & tapper
r250338 2011-10-14 12:51 3 Debug 23 athene = finished B = tapper = days: 2
1r250337 2011-10-14 14:41 &1 autoinstall-bare-rhel-6.2-32 &2 No host assigned = schedule a1 farnold
tr250336 2011-10-14 14:38 & autoinstall-bare-sles-11.2-64 £ No host assigned £ schedule root
tr250335 2011-10-14 14:04 & autoinstall-bare-sles-11.2-32 £ No host assigned £ schedule root
tr250334 2011-10-14 14:03 £ No host assigned & schedule £ farnold
1r250333 2011-10-14 14:02 &2 No host assigned = schedule & tapper
1r250332 2011-10-14 14:02 &2 track-workload-stress-rhel6.1 64 &2 No host assigned = schedule & tapper
tr250331 2011-10-14 14:02 £ track-workload-hackbench-sles11.2 64 & No host assigned & schedule & tapper
1r250330 2011-10-14 14:02 &1 track-workload-stress-sles11.2_64 & No host assigned & schedule & tapper
1r250329 2011-10-14 12:52 &1 xen-unstable-pvops 2 gawaine &2 running & tapper
1rz30328 2011-10-14 13:56 &1 Misc & No host assigned & schedule & tapper
tr250327 2011-10-14 12:04 £ xen-unstable-pvops & king & finished & tapper
1r250326 2011-10-14 13:49 &3 track-workload-hackbench-rhelé.1 64 = No host assigned = schedule & tapper
1r250325 2011-10-14 13:49 &4 track-workload-stress-rhel6.1_64 £ No host assigned £ schedule & tapper
tr250324 2011-10-14 13:49 £ track-workload-hackbench-sles11.2 64 & No host assigned & schedule & tapper
1r250323 2011-10-14 13:49 &1 track-workload-stress-sles11.2_64 £ No host assigned & schedule & tapper
1rz50322 2011-10-14 11:58 & xen-unstable-pvops & king & finished & tapper
tr250321 2011-10-14 13:41 &3 Misc £ No host assigned & schedule & root
1rz30320 2011-10-14 13:34 & Misc & No host assigned & schedule & root
tr250319 2011-10-14 11:51 £ xen-unstable-pvops & king & finished & tapper
tr250318 2011-10-14 13:18 &4 Misc &5 No host assiened & schedule & root

AMDZ1

73 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION | Control

AMDZ1

Here be dragons.

76 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION CONTROL | Overview

= “Preconditions”

— YAML files describing the machine setup

— Automatically producible

— Human-readable

— Verifiable

— Tweakable

» “Do The Right Thing” internally, like always handle root image first

= We auto-generate them from a database

— Test matrix of host/guest/workload/config combinations

77 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION CONTROL | Synopsis

precondition_ type: virt
name: automatically generated KVM test

host:
root:
precondition_type: autoinstall
grub_text: "timeout 2\n\ntitle RedHat Testing\nkernel [..] ks=[..] STAPPER OPTIONS [..]"

name: autoinstall-kvm-fedora-14
timeout: 10000
preconditions:
- precondition_type: package
filename: xen-pvops-d7e0e9f3.tar.gz
testprogram list:
- execname: /opt/tapper/bin/tapper-testsuite-ctcs
timeout testprogram: 300
guests:
- root:
precondition_type: image

- root:

precondition type: image

AMDZ1

78 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Preconditions

= Different types
— “Copy a file”, “unpack a package”
— “Base OS from image file”, “base OS from kickstart/autoyast”
— “Virtualization environment”
— “Execute test program”

— Lazy preconditions (“producer” plugins)
» “Use latest Xen package file by the time of scheduling”

= Combine that with “auto-rerun”
= Different granularity for different needs
— Single preconditions
— Macro-preconditions (+ precompile pass with template language)
— Testplans (+ multiple machines, several testruns)

79 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION CONTROL | Testplan philosophy

= Testplan developer vs. end user
= [nternal power vs. external easiness
» The testplan developer combines complexity to provide simplicity to the end user
— One single front-end file for the use-case
— Optional parameters
— Sensible defaults
— Self-documentation

$ tapper-testrun newtestplan --verbose \
--file track-workload autoinstall \
-Ddistros=rhel 6.1 64,sles 11.2 32 \
-Dtests=hackbench, dbench

80 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION CONTROL | Testplan example

» The use-case:
— Schedule matrix of workloads over distros and machines
— Track perf counters to investigate the workload
— Upload perf logs
— Organize results to ease later evaluation

81 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION CONTROL | Testplan 1/8 — prepare params

[$#—- —-*— mode: tt —-*- %]

tapper-description: Track performance counters over a workload
tapper-mandatory-fields:
tapper-optional-fields: tests, distros, machine
[— PROCESS 'osrc/includes' -%]
[$— IF tests == '!" $][% tests = 'hackbench' %] [% END -%]
[3— IF distros == '' 3][% distros = 'sles 11.2 64' %][% END -%]
[$— IF machine == '' %] [% machine = 'grizzly' %] [% END -%]
[2— IF title == ''" 3][% title = BLOCK %]\
[IF (tests.match(',')) $]MULTI\
[BLSE %] [% tests %]\
[END %]\
-\
[$ IF (distros.match(',')) $IMULTI\
[BLSE %] [% distros %]\
[END %] [% END %] [% END -%]

[

AllTests = tests.split(','"') %]
[)

All1Distros distros.split(','

o
°
o

°

5]

82 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION CONTROL | Testplan 2/8 — self-documentation

Track performance counters over several workloads.

4
Name : track-workload-[% title %]

###

Optional params:

###

-Dtests=<testname> Workload names, comma separated; default:
-Ddistros=<distro> Distro names, comma separated; default:
-Dmachine=<machine> Machine name; default:
###

Available values:

###

i distros: | [$ END

FOREACH d = distro list -%][% d 3],
FOREACH t = useful autotest tests -

0
o
0

o

HH4# tests: [

83 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

hackbench
sles 11.2 64
grizzly

END %]

AMDZ1

AUTOMATION CONTROL | Testplan 3/8 — open loops (distros + tests)

FOREACH distro = AllDistros %]

FOREACH test = AllTests %]

testrunsuffix = BLOCK %] [% test $]-[% distro %] [% END %]
Timeout = Timeout+10800 -%]

.—..—..—..—.
o® o° o o°

AMDZ1

84 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan 4/8 — prepare distro details

[% IF distro == 'sles 11.2 64' 3]

[% install file = 'autoyast=http://tapper/autoinstall/sles/11.2/x86 64/bare.xml' 5]
[% install repo = 'install=ftp://osko/testing/sles/11.2/x86 64' %]

[% install opts = 'textmode=1l' %]

[kernel = '/tftpboot/testing/sles/11.2/x86 64/linux' %

[initrd = '/tftpboot/testing/sles/11.2/x86 64/initrd'’

[END %]

[% IF distro == 'rhel 6.1 64' %]

[% install file = 'ks=http://tapper/autoinstall/rhel/6.1/x86 64/bare.ks' 5]
[% install repo = 'repo=ftp://osko/rhel/6.1/x86 64/os' %]

[% install opts = 'ksdevice=link' %]

[$ kernel = '/tftpboot/stable/rhel/6.1/x86 64/vmlinuz' %

[$ initrd = '/tftpboot/stable/rhel/6.1/x86 64/initrd.img

[END %]

85 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION CONTROL | Testplan 5/8 — the actual spec begins

type: multitest
description:
topic: track-workload-[% testrunsuffix %]
requested hosts all:
- [% machine %]
preconditions:

AMDZ1

86 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Testplan 6/8 — setup OS and copy test files

precondition type: autoinstall

name: autoinstall-[% distro %]

grub_text: "timeout 2\n\n\
title [% distro %] Testing\n\
kernel |

@)

% kernel %] \

$ install file %] \

$ install repo %] \

$ install opts %] \
console=ttyS0,115200 $TAPPER OPTIONS\n\

initrd [% initrd %$]\n"

[
[
[

precondition type: copyfile

protocol: local

name: /data/tapper/testprograms/track-workload/*
dest: /

87 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION CONTROL | Testplan 7/8 — test programs

precondition type: testprogram
program: /track-workload-pmc.sh

precondition type: testprogram
program: /opt/tapper/bin/tapper-testsuite-autotest
parameters:

- —-source url
file:///data/tapper/packages/autotest/osrc-autotest-snapshot.tar.gz
-—test
[$ test %]

o) [e)

timeout: [% Timeout %]

precondition type: testprogram
program: /track-workload-upload-results.sh

88 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION CONTROL | Testplan 8/8 — close loops

[$ END %] [%# FOREACH AllTests %]
[$ END %] [%$# FOREACH AllDistros %]

89 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION CONTROL | Testplan self-documentation

$ tapper-testrun newtestplan —--guide --file track-workload autoinstall

90 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION CONTROL | Testplan self-documentation

$ tapper-testrun newtestplan —--guide --file track-workload autoinstall

Track performance counters over several workloads.
Name : track-workload-hackbench-sles 11.2 64

Optional params:

—-Dtests=<testname> Workload names, comma separated;

-Ddistros=<distro> Distro names, comma separated;
-Dmachine=<machine> Machine name;

Available values:

distros: rhel 6.1 64, sles 11.2 o4,
tests: hackbench, dbench, tiobench,

91 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

default:
default:
default:

hackbench
sles 11.2 64
grizzly

AMDZ1

AUTOMATION CONTROL | Testplan execution

$ tapper-testrun newtestplan --verbose \
—-file track-workload autoinstall \
-Ddistros=rhel 6.1 64,sles 11.2 32 \
-Dtests=hackbench, dbench

92 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION CONTROL | Testplan execution

$ tapper-testrun newtestplan --verbose \
—-file track-workload autoinstall \
-Ddistros=rhel 6.1 64,sles 11.2 32 \
-Dtests=hackbench, dbench

Plan created
id: 241
url: http://tapper/tapper/testplan/id/241
path: topic/osrc/kernel/track-workload/track-workload autoinstall
file: /data/tapper/[..]topic/osrc/kernel/[..]/track-workload autoinstall

93 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION CONTROL | Screenshots (1)

@ list = Mozilla FireFox
Firefox™ || | Testplan list % || | Testplanid 244, t... || | Testplanid 241, t... 3 || | Testrunid 24988...

% ||| | Report ID 309790... ¥ || | ReportID 309790... % | | | Report1D309790... % | & | v

Testruns Reports Testplans

Metareports Manual

Matrix Qverview
Oct 14, 2011

Testplan by date
Testruns.
] Name Path sSuccess (success/pending/fail)

tod;
(0r410)

(0244 & track-workload MULTIMULT & topic/osrc/kernel track-workload /track workload _autoinstall | |

Wed Oct 12, 2011

3 weeks
] Name Path

T 1 month
festruns 2 months
Suecess (success/pending/fail) 4 months
=4 track-workload-stress-rhel 6.1 64 & topic/osrc/kernel/track-workload/track-workload auteinstall (1/0/0)

tp241

Active Filters

g
g
i

Copyright © 2008-2011 AMD Operating System Research Center.

AMDZ1
95 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Screenshots (2)

@ id244]

Firefoxv || | Testplan list 3 | [Testplanid 244, t... 3 || | Testplanid 241, t.

MULTI-MULTI - Mozilla Fire Fox =
. 3 ||| Testrunid 24988... 32 || | ReportID 309790.

.. % ||_| Report ID 309790... ¥ || | ReportID 309790... & | &

Testruns Reports Testplans Metareports Manual

Testplan 244: track-workload-MULTI-MULTI

Matrix Overview

Testplan by date
Testruns
today
2 days
ID DateTime (GMT) Topic Machine state Ratio Owner 1 week
1r250340 2011-10-14 12:54 i athene & running £ tapper 2 weeks
1r250341 2011-10-14 14:54 &5 No host assigned & schedule £ tapper 3 weeks
tr250342 2011-10-14 14:54 £ No host assigned = schedule = tapper 1 month
1250343 2011-10-14 14:54 2 track-workload-hackbench-rhel6.1_64 & No host assigned 2 schedule £ tapper 2 months
N 6 months
Testplan specification 12 months
path sutoinstall Active Filters
- Element: track-workload-stress-sles11.2_g4
Kernel =244
Root image
Test track-workload-pme.sh

tapper-testsuite-autotest
track-work|oad-upload-results.sh

- Element: track-warkload-hackbench-sles11.2_64
Kernel
Root image
Test track-workload-pme.sh
tapper-testsuite-autotest
track-workload-upload-results.sh

- Element: track-workload-stress-rhel6.1_64
Kernel
Root image
Test track-workload-pmc.sh
tapper-testsulte-autotest
track-workload-upload-results.sh

[a 0 |

AMDZ1
96 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Screenshots (5)

@ Report ID'309750, Top stress-rhel_6.1_64- Mozilla Firefox

Firefoxv || | Testplan list 3t || | Testplanid 244, t... 3 || | Testplanid 241, t... 3 | | | Testrunid 24988...

Testruns Testplans

Report 309790: Topic-track-workload-stress-rhel_6.1_64

report id: 309790 0-11 18: 17:0% GMT Hast: “arges’

Reports

ID DateTime (GMT) Suite Machine Success R:

Grouped by Owner

r309790 2011-10-11 18:17 & Topic-track-workload-stress-rhel 6.1 64 £ arges & PASS | testrun 249886 & tapper
20111011 1817 @ o o
20111011 18117 @ o o
2011-10-11 18:16 @ H] o
2011-10-11 1815 @ H] o
2011-10-11 18:05 &]]

Test Execution Context

track-workload-pme (r109787)
section-000
ram: 48396
cpuinfo: 24 cores [AMD Engineering Sample]

uname: Linux arges 2.6.32-131.0.15.el6.x86_64 #1 SMP Tue May 10 15:42:40 EDT 2011 x86_64 x86_64 x86_64 GNU/Linux
osname: Red Hat Enterprise Linux Server release 6.1 (Santiago)

flags: ro root=UUID=bfa3526e-0b4d-4306-b6cf-217d063c2138 rd_NO_LUKS rd_NO_LVM rd_NO_MD rd_NO_DM LANG=en_US.UTF-8 SYSFONT=latarcyrheb-sun16
KEYBOARDTYPE=pc KEYTABLE=us crashkernel=129M@OM tapper_host=plutonium tapper_port=1337 console=tty0 console=ttysg,115200

kernel: 2.6.32-131.0.15.16.x86_64

changeset:

Linux version 2.6.32-131.0.15.el6.x86_64 (mockbuild@x86-007.build.bos.redhat.com) (gcc version 4.4.4 20100726 (Red Hat 4.4.4-13) (GCC)) #1 SMP Tue May 10
13:42:40 EDT 2011

Testrun Specification

Hame

Host
Architecture
Root image
Test

|| | ReportID 309790... ¥ || | ReportID 309790..

. % ||| Report1D309790...

Metareports Manual

12 months

reports by suite

reports by host

99 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

AUTOMATION CONTROL | Screenshots (6)

ReportID 309790, Topic-track-workload-stress-rhel_6.1_64'- Mozilla Firefox =)
Firefoxv || | Testplan list 22 | [| Testplanid 244, t... 3 || | Testplanid 241, t... | | | Testrunid 24988... ¢ || | ReportID 309790... 2 || | ReportID 309790... ¢ || | ReportID309790... % | 4 | ¥
=
track-workload-pmc (r309787) il
section-000
ram: 48396

«cpuinfo: 24 cores [AMD Englineering Sample]
S Linux arges 2.6.32-131.0.15.el6.x86_64 #1 SMP Tue May 10 15:42:40 EDT 2011 x86_64 x86_64 x86_64 GNU/Linux
Red Hat Enterprise Linux Server release 6.1 (Santiago)
r0 root=UUID=bfa3526e-0b4d-4306-b6cf-217d063c2138 rd_NO_LUKS rd_NO_LVM rd_NO_MD rd_NO_DM LANG=en_US.UTF-8 SYSFONT=latarcyrheb-sun16
KEVBOARDTYPE=pc KEYTABLE=us c =129M@0M tapper_| tapper_port=1337 console=tty0 console=ttys0,115200
kernel: 2.6.32-131.0.15.e16.x86_64
changeset: Linux version 2.6.32-131.0.13.el6.x86_64 (mockbuild@x86-007.build.bos.redhat.com) (gcc version 4.4.4 20100726 (Red Hat 4.4.4-13) (GCC)) #1 SMP Tue May 10
13:42:40 EDT 2011

Testrun Specification

Hame

Host
Architecture
Root image
Test

Test results

PASSED

Test file Test results %
MCP-overview ;[1100.0%
1 files 2 tests, 2 ok, 0 failed, 0 todo, 0 skipped, 0 parse errors L
exit status: 0, wait status: 0 100.0%
elapsed time: 0 wallclock secs (0.03 usr + 0.00 sys = 0.05 CPU)

raw TAP report
Attachments

console 138612 Bytes view inline | ansi-colored plain 2011-10-11 18:17:10 GMT
test_opt tapper_bin_tapper-testsuite-autotest_stderr 452 Bytes view inline | ansi-colored plain 2011-10-11 1 10 GMT
test opt_tapper bin_tapper-testsuite-autotest_stdout 0 Bytes i plain 2011-10-11 18:17:10 GMT

test_ track-workload-pmc_sh_stderr 265 Bytes view inline | ansi-colored plain 2011-10-11 18:17:10 GMT
test__track-workload-pmec_sh_stdout 0 Bytes view inline | ansi-colored plain 2011-10-11 1 10 GMT
test _track-workload-upload-results sh stderr 136 Bytes L plain - 2011-10-11 18:17:10 GMT
test_track-workload-upload-results_sh_stdout 0 Bytes plain 2011-10-11 18:17:10 GMT

‘Copyright © 2008-2011 AMD Operating System Research Center.

AMDZ1

100 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AUTOMATION CONTROL | Screenshots (7)

101

Firefoxv

| | Testplan list
T3

kS
AU EUT 2UTT

ReportID 309790, Topic-track-workload-stress-rhel_6.1_64'- Mozilla Firefox

Testrun Specification

Mame
Host

Architecture

Root image

Test
Test results

Test file Test results

MCP-overview [

TAP Version 13
1.2

Tapper-machine-name: arges
Tapper-section: MCP overview
Tapper-reportgroup-primary: 1
ok 1 - Installation finished
ok 2 - Testing finished in PRC 0

-
#
Tapper-sulte-version: 3.000010
#
#

Tapper-reportgroup-testrun: 249886
Tapper-suite-name: Topic-track-workload-stress-rhel 6.1 64

Evd

exit status: 0, wait status: 0

raw TAP report
Attachments

console

test_opt tapper_bin_tapper-testsuite-autotest_stderr
test opt_tapper bin_tapper-testsuite-autotest_stdout
test__track-workload-pmc_sh_stderr

test _track-workload-pme sh stdout
test_track-workload-upload-results_sh_stderr
test_track-workload-upload-results_sh_stdout

1 files 2 tests, 2 ok, 0 failed, 0 todo, 0 skipped, O parse errors

198612 Bytes
452 Bytes

0 Bytes

265 Bytes

0 Bytes

136 Bytes

0 Bytes

elapsed time: 0 wallclock secs (0.03 usr + 0.00 sys = 0.05 CPU)

view inline | ansi-colored plain
view inline | ansi-colored plain
’ plain
view inline | ansi-colored plain
view inline | ansi-colored plain
L plain

plain

2011-10-11 18:17:10 GMT
2011-10-11 1 10 GMT
2011-10-11 18:17:10 GMT
2011-10-11 1 10 GMT
2011-10-11 1 10 GMT
2011-10-11 18:17:10 GMT
2011-10-11 18:17:10 GMT

‘Copyright © 2008-2011 AMD Operating System Research Center.

Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

EVALUATE RESULTS

AMDZ1

RESULTS

Automation
Framework

Test
Suites

TAP

103 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

Reports
Framework

AMDZ1

EVALUATE RESULTS | What do we have so far?

= Remember: we dropped TAP into Tapper with “fire & forget” (netcat)
— Hide internal complexity

» Actual success status

= Aggregated results

= Report groups

» Meta-information

* Embedded YAML data

= Any sufficiently advanced technology
— TAP::Parser

TAP::DOM

— TAP::Formatter::HTML

— Databases

— Etc.

= How to trivially access results?

104 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

EVALUATE RESULTS | The no-problem

= Web application for “end users”
— RED/ /| GREEN
— Cautious but useful Javascript
— Overviews, details, attachments
— List, filters, RSS feeds

106 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

EVALUATE RESULTS | The no-problem - screenshots (2)

File Edit View History Bookmarks Tools Help

Tesiruns Metareporis Hardware Manual

220116: KernBench

report id; 220416 5 201

Testrun

ID DateTime (GMT)

r220169 2011-03-24 13:12
2011-03-2413:12
2011-03-24 1312
2011-03-2413:12
2011-03-24 1054
2011-03-24 03:11

2011-03-24 02:00

Test Execution Context

Host-Overview (219876}

Metainfo
ram:
cpuinio
uptime

KVM-Metainio
kvm_module_version:
kvm_userspace_version
kvm_kernel
kvm_base_os_description:

quest_1_suse_sles!

Done

03-24 10:54:30 GMT Host: 'kobold:takujui

Suite Machine
& Topic-autoinstall-kvm-rhel-5.6 & kobold
a a
-] -]
a a
-] -]
-] -]
a a
5019 MB

2x Family: 16, Model: 2, Stepping: 2
1hrs

kvm-83-224.¢el5
kvm-83-maini-snapshoi-20090205
2.6.16-238.el5 x86_64

KernBench
Success Ratio Grouped by
& FAIL ™ festrun 181155 (artemis)
]

B

- - -+

Red Hat Enterprise Linux Server release 5.6 (Tikanga)

0_spé4_rc1_32bpac_maw

108 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

EVALUATION | Query API

AMDZ1

QUERY API | The query gap

= Scriptable querying
— The same ease as reporting
— Again: shell level, netcat
= Use-cases
— Generally access our own reports

» Data + attachments
— Track test success over time
— Track benchmark results
— Custom-visualize the data
= Challenges
— Test suites change over time - fuzzy find
— Hide the toolchain

111 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

QUERY API | The solution

= Provide template mechanism
= With embedded query language “DPath”
= Dialog-oriented protocol

— HERE-doc style

— - Send template with “netcat”

— < Receive processed content

112 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

QUERY API | Example 1 — Get simple values

= Command
$ cat report.mas | netcat tapper 7358 > result.txt

= Template

#! tt <<EOTEMPLATE
Planned tests:
[% FOREACH x IN reportdata('{ "suite.name" => "power msr" } :: //tap/tests_planned') -%]

Q

[5 x %]
[END %]
EOTEMPLATE

= Result

Planned tests:
3
4

17

AMDZ1

113 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

QUERY API | Example 2 — Fill a GNUPLOT file

= Command
$ cat CTCS ratio.gnuplot | netcat tapper 7358 | gnuplot

= Template

#! tt <<EOTEMPLATE
TITLE = "success ratio: CTCS™
set output "CTCS ratio.png"
plot '-' using 0:2 with linespoints
[time = reportdata('...') %]
[ratio = reportdata('...') %]
[$ FOREACH i IN .. %]
[$ time.$i %] [% ratio.$i %]
[$ END %]
EOTEMPLATE

= Result
— Generated file "CTCS ratio.png"

114 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

QUERY API | Example 2 — Fill a GNUPLOT file

= Command
$ cat CTCS ratio.gnuplot |

= Template

#! tt <<EOTEMPLATE

TITLE = "success ratio: CTCS™

set output "CTCS ratio.png"

plot '-' using 0:2 with linespoints
[time = reportdata('...') %]

[ratio = reportdata('...') %]

[FOREACH i IN .. %]

[©)

[$ time.Si %]
[$ END %]
EOTEMPLATE

[©)

[$ ratio.$i %]

= Result
— Generated file "CTCS ratio.png"

netcat tapper 7358 |

gnuplot

N
A

l

| r‘u

! l

M

I 1 Wil r.

H, \‘f“ll\\| 5[\‘\ff
h i ;|\u

f

ML

il

Hl

JW|lVfrW

1 o

K

115 | Linux Testing with Tapper —

Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

Did you notice? No client-side toolchain dependencies!

118 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

QUERY API | How does it work?

= TAP::DOM
— A data structure (DOM) out of TAP

119 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

QUERY API | How does it work?

" TAP:DOM { 'tests_planned' => 6
— A data structure (DOM) out of TAP ‘tests run’ = 8
'summary' => ({
'status’ => 'FAIL',
'total' => 8,
'passed’ > 6,
'failed' => 2,
'skipped' > 1,
'todo' > 4,
'todo passed' => 2,
} 14
'lines' => |
{ "number' = '1"',
'is ok’ = 1,
'description' => '- connection established’,
' children' => [
{ "is _yaml' => 1,
'data' => [{'passl' => '1234.56"',

I

120 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

'pass2' => '999.99"' }]

}

AMDZ1

QUERY API | How does it work?

= TAP::DOM

— A data structure (DOM) out of TAP
= DPath to fuzzy navigate data

— XPath-like

{

'tests_planned' => 6
'tests run' > 8

'summary' => ({

'status’ => 'FAIL',
'total' => 8,
'passed’ > 6,
'failed' => 2,
'skipped' =1,
'todo' > 4,
'todo passed' => 2,
}I
'lines' => |
{ "number' = '1"',
'is ok’ = 1,
'description' => '- connection established’,
' children' => [
{ "is _yaml' => 1,
'data' => [{'passl' => '1234.56"',

I

121 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

'pass2' => '999.99"' }]

}

AMDZ1

QUERY API | How does it work?

= TAP::DOM

— A data structure (DOM) out of TAP
= DPath to fuzzy navigate data

— XPath-like

'/tests_planned'’

Il
vV

ltests_planne
"tests run

Il
\Y

'summary' => ({
'status'’'
'total'’
'passed’
'failed'
'skipped'
'todo'

'todo passed'

}I
'"lines' => [
{ "number'
'is ok’
'description'’
' children'

=> 'FAIL',

=>

=>
=>

{ '"is _yaml'
'data' =>

I

|
\%
NS 2N oY 00

~

~

~

~

~

ll',
1,
'- connection established',

[

=1,

[{'passl' => '1234.56"',
'pass2' => '999.99' }]

122 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

}

AMDZ1

QUERY API | How does it work?

= TAP::DOM

— A data structure (DOM) out of TAP
= DPath to fuzzy navigate data

— XPath-like

'/tests_planned'’
'//tests_planned’

Il
vV

ltests_planne
"tests run

Il
\Y

'summary' => ({
'status'’'
'total'’
'passed’
'failed'
'skipped'
'todo'

'todo passed'

}I
'"lines' => [
{ "number'
'is ok’
'description'’
' children'

=> 'FAIL',

=>

=>
=>

{ '"is _yaml'
'data' =>

I

|
\%
NS 2N oY 00

~

~

~

~

~

ll',
1,
'- connection established',

[

=1,

[{'passl' => '1234.56"',
'pass2' => '999.99' }]

123 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

}

AMDZ1

QUERY API | How does it work?

= TAP::DOM

— A data structure (DOM) out of TAP
= DPath to fuzzy navigate data

— XPath-like

'/tests_planned'’
'//tests_planned’
'//todo_passed'’

{

'tests_planned' => 6
'tests run' > 8

'summary' => ({

'status’ => 'FAIL',
'total' > 8,
'passed’ > 6,
'failed' => 2,
'skipped' =1,
'todo' > 4,
'ltodo passed) => 2,
4
}I
'lines' => |
{ "number' = '1"',
'is ok’ = 1,
'description' => '- connection established’,
' children' => [
{ "is _yaml' => 1,
[

'data' =>

I

{'passl' => '1234.56",
'pass2' => '999.99"' }]

124 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

}

AMDZ1

QUERY API | How does it work?

" TAP::DOM { 'tests_planned' => 6
— A data structure (DOM) out of TAP 'tests_run' => 8,
= DPath to fuzzy navigate data 'summary' => {
. 'status’ => 'FAIL',
— XPath-like 'total ' -8
'passed’ => 6,
"failed' = 2,
'skipped'’ => 1,
'todo'! => 4,
'todo passed' => 2,
'/tests_planned'’
'//tests_planned'’ },
'//todo_passed' 'lines' => [
'//data//pass2’ { 'number' => '1',
'is ok’ = 1,
'description' => '- connection established’,
' children' => |
{ '"is yaml' => 1,
[(' g

{'pasgl' => '1234.56",
' => 1999.99" }] }

I

AMDZ1

125 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

QUERY API | How does it work?

= TAP::DOM

— A data structure (DOM) out of TAP
= DPath to fuzzy navigate data

— XPath-like

'/tests_planned'’
'//tests_planned’
'//todo_passed'’
'//data//pass2’
'"//lines/*/is_ok'

'tests_planned' => 6
'tests run' => 8

'summary' => ({

'status’' =>
'total' =>
'passed’ =>
'failed' =>
'skipped' =>
'todo! =>
'todo passed' =>

'"FAIL',

~

~

~

~

N > P N oYy 0

~

%i!E!$P>=Sjﬁ{' = '1"',

' children' =>

(
{ "is _yaml' => 1,
(

'data' =>

I

1,

numher =
'Es ok =>
'description' => '- connection

{'passl' => '1234.56",
'pass2' => '999.99"' }]

126 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

established’',

}

AMDZ1

QUERY API | Anatomy of a Tapper::DPath

{ suite name => "CTCS" } :: //tests planned[value > 10]/

= Virtual DOM of the TAP database
= Two orthogonal concepts
— Database axis: provide but hide relational access

= SQL::Abstract
» The “history of reports”
— Report axis: inside single reports data structure
= TAP::DOM
» Data::DPath
* [nside “one point in history”

127 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

. ./summary/passed

AMDZ1

MORE

AMDZ1

MORE | Topics

= Benchmark sub-infrastructure
— Subscribe to incoming data with DPaths (//data//codespeed/ *)

— Pass-through to benchmark rendering application - Codespeed

= Integration with TaskJuggler
— Map task IDs to filesystem hierarchy of testplan files

*» osrc.productfoo.xen.power msr.xend4 3 > osrc/productfoo/xen/power msr/xend 3
= Schedule testruns by taskjuggler task dates
= Report back results per E-Mail as TaskJuggler timesheets

» TaskJuggler renders project status from that

= Deployment
— Bootstrap your own infrastructure
— Create utility images, client packages

129 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

SUMMARY

AMDZ1

SUMMARY | Framework

= Complete testing environment fitting several parties’ needs
— Test team
= Automation to run machine pool
— Developer / Tester

= Support on developing and running tests

= Locally and/or automated

— Manager / Tester
» Visual presentation of test results

= QA lifecycle, driven by planning software
= Built on top of open source standards
= Provide complexity — allow simplicity

= The End — Thank Youl!

AMDZ1

132 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions.

Other names used in this presentation are for identification purposes only and may be trademarks of their respective owners.

©2011 Advanced Micro Devices, Inc. All rights reserved.

133 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

http://amd64.org/mailman/listinfo/tapper

irc.freenode.net / #tapper

github.com/amd

134 | Linux Testing with Tapper — Complexity in a nutshell | October 28, 2011 | Public

AMDZ1

http://amd64.org/mailman/listinfo/tapper
http://amd64.org/mailman/listinfo/tapper
http://amd64.org/mailman/listinfo/tapper
http://amd64.org/mailman/listinfo/tapper
http://amd64.org/mailman/listinfo/tapper
http://webchat.freenode.net/?channels=tapper
http://webchat.freenode.net/?channels=tapper
https://github.com/amd
https://github.com/amd
https://github.com/amd

